首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Growing hyphal tips of higher fungi contain an organized assemblage of secretory vesicles and other cell components collectively known as the Spitzenkörper. Until now, the Spitzenkörper has been portrayed as a single spheroid complex located near the apical cell wall. This study demonstrates the occurrence of multiple Spitzenkörper in growing hyphal apices imaged by video-enhanced phase-contrast microscopy. In addition to the main Spitzenkörper, smaller satellite Spitzenkörper arise a few micrometers behind the apical pole. Four developmental stages were identified: (a) the satellites first appeared as faint phase-dark plaques next to the plasma membrane, (b) gradually increased in size and assumed an ovoid profile, (c) they migrated to the hyphal apex, and (d) finally they merged with the main Spitzenkörper. After the merger, the main Spitzenkörper temporarily increased in size. Satellites were observed in 14 fungi, most of which had relatively large (5–10 m diam.), fast-growing hyphae (2–33 m/min elongation rate). The average frequency of in-focus satellites was 7+/min forFusarium culmorum and 11+/min forTrichoderma viride. As with the main Spitzenkörper, satellites were present only in growing cells. They were transient and remained visible for 3–8 s before merging with the main Spitzenkörper. Within the hyphae, satellites travelled up to six times faster than the average cell elongation rate. Multiple satellites sometimes occurred simultaneously; up to three were seen within a hyphal apex at the same time. Localized cell enlargement occurred next to stationary satellites, suggesting that satellite Spitzenkörper are functional as sources of new cell surface before they reach the main Spitzenkörper; therefore, they account for some variations in the profiles of the growing hyphae. By electron microscopy, satellites consisted of small clusters of apical vesicles surrounding a group of microvesicles located next to the plasma membrane. The identification and behavior of the satellites represent clear evidence of directional mass transport of vesicles toward the hyphal apex. Our observations indicate that satellites are a common phenomenon in growing hyphal apices of septate fungi and that they contribute to growth of the hyphal apex.Abbreviations VSC vesicle supply center  相似文献   

3.
4.
5.
The size of plant cells is determined by genetic, structural and physical factors as well as by internal and external signals. Our knowledge of the molecular mechanisms of these controls is still rudimentary. Recent studies indicate that ploidy level exerts an important control on cell size. By increasing ploidy, endoreduplication may allow cells to reach extraordinary sizes. This process is widespread in plants and may provide a means to manipulate the cell volume.  相似文献   

6.
Are fast growing birch leaves more asymmetrical?   总被引:1,自引:0,他引:1  
Mikhail V. Kozlov 《Oikos》2003,101(3):654-658
Two recent papers (Martel et al. 1999, Lempa et al. 2000), linked rapid leaf growth in birches with high level of developmental instability, measured by leaf fluctuating asymmetry (FA). I discuss methodological approaches used in the referred papers and conclude that none of them provided incontrovertible support for the hypothesis on positive correlation between FA and leaf growth rate. A field study designed to test this hypothesis by an independent data set revealed no correlation between FA and either relative or absolute leaf growth rate in mountain birch either in within-tree or in between-tree comparisons. Character of the relationships between FA and growth may change with the index used to quantify developmental instability.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号