首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed the transmission of maternal alleles at loci spanning the length of the X chromosome in 47 normal, genetic disease-free families. We found a significant deviation from the expected Mendelian 1:1 ratio of grandpaternal:grandmaternal alleles at loci in Xp11.4-p21.1. The distortion in inheritance ratio was found only among male offspring and was manifested as a strong bias in favor of the inheritance of the alleles of the maternal grandfather. We found no evidence for significant heterogeneity among the families, which implies that the major determinant involved in the generation of the non-Mendelian ratio is epigenetic. Our analysis of recombinant chromosomes inherited by male offspring indicates that an 11.6-cM interval on the short arm of the X chromosome, bounded by DXS538 and DXS7, contains an imprinted gene that affects the survival of male embryos.  相似文献   

2.
Imprinting and deviation from Mendelian transmission ratios.   总被引:4,自引:0,他引:4  
Deviations from a Mendelian 1:1 transmission ratio have been observed in human and mouse chromosomes. With few exceptions, the underlying mechanism of the transmission-ratio distortion remains obscure. We tested a hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and possibly results from the loss of embryos which carry imprinted genes with imprinting marks that have been incorrectly reset. We analyzed transmission of alleles in four regions of the human genome that carry imprinted genes presumably critical for normal embryonic growth and development: 11p15.5 (H19, IGF2, HASH2, etc.), 11p13 (WT1), 7p11-12 (GRB10), and 6q25-q27 (IGF2R), among the offspring of 31 three-generation Centre d'Etude de polymorphism Humain (CEPH) families. Deviations from expected 1:1 ratios were found in the maternal chromosomes for regions 11p15.5, 11p13, and 6q25-27 and in the paternal chromosomes for regions 11p15 and 7p11-p12. The likelihood of the results was assessed empirically to be statistically significant (p = 0.0008), suggesting that the transmission ratios in the imprinted regions significantly deviated from 1:1. We did not find deviations from a 1:1 transmission ratio in imprinted regions that are not crucial for embryo viability (13q14 and 15q11-q13). The analysis of a larger set of 51 families for the 11p15.5 region suggests that there is heterogeneity among the families with regard to the transmission of 11p15.5 alleles. The results of this study are consistent with the hypothesis that grandparental-origin dependent transmission-ratio distortion is related to imprinting and embryo loss.  相似文献   

3.
Parental origin of chromosomes in Down's syndrome   总被引:4,自引:0,他引:4  
Summary The number of 21 chromosomes of 15 individuals with Down's syndrome and their parents were examined in an attempt to determine the parental origin of the extra number 21 chromosome and the stage of meiosis at which nondisjunction occurred. Chromosomes were stained with quinacrine hydrochloride and photographed; serial prints were made ranging from underexposed to overexposed. Twelve of the 15 families (80%) were informative: nondisjunction occurred in maternal meiosis I in eight (66.7%) families, in paternal meiosis I in two (16.7%) families, and in paternal meiosis II in two (16.7%) families. The production of serial exposures of chromosomes at the time of printing proved to be a valuable method of enhancing slight differences in short arm and satellite structure of the number 21 chromosomes and thereby increasing the number of informative families.  相似文献   

4.
Genetic imprinting has been implicated in the etiology of two clinically distinct but cytogenetically indistinguishable disorders--Angelman syndrome (AS) and Prader-Willi syndrome (PWS). This hypothesis is derived from two lines of evidence. First, while the molecular extents of de novo cytogenetic deletions of chromosome 15q11q13 in AS and PWS patients are the same, the deletions originate from different parental chromosomes. In AS, the deletion occurs in the maternally inherited chromosome 15, while in PWS the deletion is found in the paternally inherited chromosome 15. The second line of evidence comes from the deletion of an abnormal parental contribution of 15q11q13 in PWS patients without a cytogenetic and molecular deletion. These patients have two maternal copies and no paternal copy of 15q11q13 (maternal uniparental disomy) instead of one copy from each parent. By qualitative hybridization with chromosome 15q11q13 specific DNA markers, we have now examined DNA samples from 10 AS patients (at least seven of which are familial cases) with no cytogenetic or molecular deletion of chromosome 15q11q13. Inheritance of one maternal copy and one paternal copy of 15q11q13 was observed in each family, suggesting that paternal uniparental disomy of 15q11q13 is not responsible for expression of the AS phenotype in these patients.  相似文献   

5.
Inherited ring chromosomes: an analysis of published cases   总被引:1,自引:1,他引:0  
Summary A review of case reports on patients with ring chromosome revealed 30 individuals (plus two fetuses) who inherited the ring from a total of 23 carrier parents (21 mothers and 2 fathers). The proportion of cases with inherited rings, among all patients with a ring, was calculated to be 5.6% as an upper limit. However, because of a propable difference in survival and fertility between individuals with transmitted and de novo rings, and because of the preferential publication of cases involving inherited rings (and thus a publication bias), the proportion of inherited rings should in reality be no more than 1%. Out of 30 transmitted rings, there were 9 where parent and child were both mosaics, suggesting an inherited instability of the chromosome involved leading to de novo re-formation of the ring in the second generation. The relatively mild clinical manifestations of ring chromosomes, in general, was found to be even more striking in familial cases. In half of the offspring the phenotype was very similar to that of the parent. However, in about a third of cases the offspring were more severely (mentally) affected. This fact should be considered in genetic counseling of clinically normal women who carry a ring chromosome.  相似文献   

6.
We analyzed rates of extra structurally abnormal chromosomes (ESAC) detected in prenatal cytogenetic diagnoses of amniotic fluid reported to the New York Chromosome Registry. These karyotypes include both extra unidentified structurally abnormal chromosomes (EUSAC)--often denoted as "markers"--and extra identified structurally abnormal chromosomes (EISAC). The rate of all EUSAC was 0.64/1,000 (0.32-0.40/1,000 mutant and 0.23-0.32 inherited), and that of all EISAC was 0.11/1,000 (0.07/1,000 mutant and 0.04/1,000 inherited). The rate of all ESAC was approximately 0.8/1,000-0.4-0.5/1,000 mutant and 0.3-0.4/1,000 inherited. Mean +/- SD maternal age of mutant cases was 37.5 +/- 2.9, significantly greater than the value of 35.8 years in controls. A regression analysis indicated a rate of change of the log of the rate of about +0.20 with each year of maternal age between 30 and 45 years. When paternal age was introduced, the maternal age coefficient increased to about +0.25--close to that seen for 47, +21--but the paternal age coefficient was -0.06. After being matched for maternal age and year of diagnosis, the case-control difference in paternal age for 24 mutant cases was -2.4 with a 95% confidence interval of -4.6 to -0.1 years. In a regression analysis of the effects of both parental ages on the (log) rate, the maternal age coefficient was +0.25 and the paternal age coefficient was -0.06. These results are consistent with a (weak) negative paternal age effect in the face of a strong maternal age effect. Since ESAC include a heterogeneous group of abnormalities, the maternal age and paternal age trends, if not the result of statistical fluctuation or undetected biases, may involve different types of events. Data in the literature suggest that chromosomes with de novo duplicated inversions of 15p have a strong maternal age effect (but little paternal age effect). Such chromosomes, however, do not account for the active maternal age trends seen in the data analyzed here. Inherited ESAC exhibited no such trends.  相似文献   

7.
One t(14q14q), three t(15q15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange.  相似文献   

8.
The long-QT (LQT) syndrome is a genetically complex disorder that is characterized by syncope and fatal ventricular arrhythmias. LQT syndrome, as defined by a prolonged electrocardiographic QT interval, has a higher incidence in females than in males and does not exhibit Mendelian transmission patterns in all families. Among those families that are nearly consistent with Mendelian transmission, linkage between a locus for LQT syndrome and the H-ras-1 locus on the short arm of chromosome 11 has been reported in some families but not in others. Earlier analyses suggesting that LQT syndrome might be caused by a gene in the HLA region of chromosome 6 were not confirmed by standard linkage analyses. Here, we present an analysis of HLA haplotype sharing among affected pedigree members, showing an excess of haplotype sharing in a previously published Japanese pedigree and possibly also in 15 families of European descent. The haplotypes shared by affected individuals derive from both affected and unaffected parents. In an analysis of independent (unrelated) HLA haplotypes, we also found a nonrandom distribution of HLA-DR genes in LQT syndrome patients compared with controls, suggesting an association between the LQT phenotype and specific HLA-DR genes. Our data indicate that DR2 has a protective effect and, particularly in males, that DR7 may increase susceptibility to the LQT syndrome. Thus, LQT syndrome may be influenced by genes on chromosomes 11 and 6, possibly with a sex-specific effect. These results provide a model for an effect of HLA-region genes inherited from either parent on the expression of an illness that may be determined principally by alleles at loci not linked to HLA.  相似文献   

9.
Two families were ascertained through a proband with Down syndrome and a structural rearrangement involving two chromosomes 21. It is suggested that in one patient the chromosome is an isochromosome formed by misdivision of the centromere of a maternal telocentric chromosome 21 and that in the other a Robertsonian translocation involving chromosome 21 was inherited from the mother, who is a 46,XX/46,XX, -21,+t(21q21q) mosaic. The origin of the mosaicism is discussed and considered to be likely to be the result of breakage and reunion at the chromatid, rather than the chromosome, level.  相似文献   

10.
Recurrent deletions and duplications at chromosomal region 16p11.2 are a major genetic contributor to autism but also associate with a wider range of pediatric diagnoses, including intellectual disability, coordination disorder, and language disorder. In order to investigate the potential genetic basis for phenotype variability, we assessed the parent of origin of the 16p11.2 copy-number variant (CNV) and the presence of additional CNVs in 126 families for which detailed phenotype data were available. Among de novo cases, we found a strong maternal bias for the origin of deletions (59/66, 89.4% of cases, p = 2.38 × 10−11), the strongest such effect so far observed for a CNV associated with a microdeletion syndrome. In contrast to de novo events, we observed no transmission bias for inherited 16p11.2 CNVs, consistent with a female meiotic hotspot of unequal crossover driving this maternal bias. We analyzed this 16p11.2 CNV cohort for the presence of secondary CNVs and found a significant maternal transmission bias for secondary deletions (32 maternal versus 14 paternal, p = 1.14 × 10−2). Of the secondary deletions that disrupted a gene, 82% were either maternally inherited or de novo (p = 4.3 × 10−3). Nine probands carry secondary CNVs that disrupt genes associated with autism and/or intellectual disability risk variants. Our findings demonstrate a strong bias toward maternal origin of 16p11.2 de novo deletions as well as a maternal transmission bias for secondary deletions that contribute to the clinical outcome on a background sensitized by the 16p11.2 CNV.  相似文献   

11.
Uniparentally inherited genetic elements are under strong selection to manipulate sex determination in their host and shift the host sex ratio towards the transmitting sex. For any sex-ratio trait, lineage analysis and quantitative genetics are important tools for characterizing the mode of inheritance (biparental vs. maternal vs. paternal) thereby narrowing the field of possible sex-determining mechanisms (e.g. polygenic, sex chromosomes with meiotic drive, cytoplasmic microorganisms). The primary sex ratio of the harpacticoid copepod, Tigriopus californicus is often male-biased and is highly variable among full sib families. We found that this extra-binomial variation for the primary sex ratio is paternally but not maternally transmitted in T. californicus. Paternal transmission of the primary sex ratio has been well documented in the haplo-diploid hymenoptera but is relatively rare in diplo-diploid organisms. If the sex-ratio trait is paternally transmitted in other closely related harpacticoid copepods it would explain why male biased primary sex ratios are so common in this group.  相似文献   

12.
Data on the age of grandparents of 243 children with Down syndrome (DS) born between 1990 and 1999 are considered in this work in comparison with control families of 330 healthy children. In 102 families, where the age of the mother at the birth of a child with DS was younger 30 (or less than 30) years, the median ages of both maternal and paternal grandmothers of probands were actually the same (26 years). Actually, the median age of grandmothers in 226 young families having healthy children were also the same (27 years). No differences in the indicators in question were revealed between 141 families with DS and 104 families with healthy children, where the mothers were older than 29 years. Thus, our results have not confirmed the hypothesis about the influence of the age of DS probands’ grandmothers on the segregation of chromosomes in their daughters’ oogenesis, as well as the hypothesis about a significant contribution of the inherited trisomy of chromosome 21 to the frequency of DS in the general population.  相似文献   

13.
A plant with 2n = 14 + 1 ring chromosomes was obtained in the progeny of a primary trisomie for chromosome 7 of a two-rowed cultivar, Shin Ebisu 16. The morphological characteristics of the trisomic plants with an extra ring chromosome were similar to the primary trisomic for chromosome 7 (Semierect), which suggests that it originated from this chromosome. The ring chromosomes were not completely stable in mitotic cells because of abnormal behavior. Chromosome complements varied in different plants and in different roots within a plant. Root tip cells and spikes with 2n = 14 and 14 + 2 ring chromosomes were observed on plants with 14 + 1 ring chromosomes. Breakage-fusion-bridge cycle was inferred. The ring chromosome was associated with two normal homologues forming a trivalent in 17.6% sporocytes at metaphase I. The transmission of the extra ring chromosome was 23.1% in the progeny of the plant with 14 + 1 ring chromosomes. Trivalent formation may have been much higher at early prophase stages which were difficult to analyze in barley; only 4 of 120 sporocytes analyzed showed an isolated ring at pachytene. The ring chromosome moved to one pole without separation in 24.7% of the sporocytes at AI, and divided in 27.1% sporocytes giving rise to 8-8 separation. Only 10% of the sporocytes showed bridge formation at AI.  相似文献   

14.
A 9-year-old mentally retarded girl with multiple congenital anomalies was found to carry a balanced 13/14 Robertsonian translocation [45,XX,t(13q14q)] which was also present in her father. Her mother carried a balanced reciprocal translocation between chromosomes 1 and 14 [46,XX,t(1;14) (q32;q32)]. Both of her parents were phenotypically normal. Molecular studies were carried out to determine the parental origin of chromosomes 1, 13, and 14 in the patient. Using probes for D14S13 and D14S22, we could show that the patient inherited both chromosomes 14 from her father and none from her mother. Similar studies using probes for chromosomes 1 (D1S76) and 13 (D13S37) loci showed the presence of both maternal and paternal alleles in the patient. Our findings indicate that paternal uniparental heterodisomy for chromosome 14 most likely accounts for the phenotypic abnormalities observed in our patient. It is suggested that uniparental disomy may be the basis for abnormal development in at least some phenotypically abnormal familial balanced-translocation carriers.  相似文献   

15.
Summary Eight patients are reported with a de nov extra inverted duplicated chromosome 15. The abnormal chromosome was considered to be the same in all cases, but its precise delineation remained uncertain and was defined as either 15qter15q12::15q1215pter or 15pter15q11::15q1315pter. Analysis with various techniques of the satellite regions of the bisatellited chromosomes demonstrated maternal derivation in six and paternal derivation in one of the seven families. A nonsister chromatid exchange between the two homologous chromosomes 15 is considered a likely origin of the inv dup(15) in the cases with maternal derivation; in the only case of paternal derivation, however, the abnormal chromosome originated from one single chromosome 15. The clinical findings confirm that patients with inv dup(15) have mental and developmental retardation and are frequently affected by seizures, while severe physical malformations are absent.  相似文献   

16.
These data have been collected from St. Petersburg Down Syndrome Register that comprises information on 1778 liveborn children with the Down syndrome, including three twin sets, ascertained within 1970-1996. Karyotypes were obtained in 1223 cases, of which 1119 (90.7%) displayed regular trisomy. Mosaicism was found in 44 cases (3.6%), including 21 males and 24 females, and among these one familial case of mosaicism in a daughter and in a healthy mother. Of 70 cases of translocations, 41(5.7%) were Robertsonian D ones. 21 (17 inherited, 16 de novo and 8 of unknown origin), 28 translocations of isochromosomes 21q; 21q (1 inherited translocation 21; 22, 22 de novo and 5 of unknown origin). One child received the anomaly from his 46XX/45XX, t(D;G) mother-carrier. In 6 cases, free trisomy 21 was associated with structural or numerical anomalies: 46XY,t(13;14)mat + 21 in twins, 47XY,t(C;C) + 21, 47XY,t(10;15)pat + 21, 47XY,inv(19)mat + 21, 47XX + 21/48XX + 21 + ring, 48XXX + 21. In 12 families parental mosaicism was shown or suspected. In 6 families one parent had chromosome anomaly, in three cases it was not inherited: t(15;22) and t(6;21) in mothers and an additional small marker in a father. In cases confirmed cytogenetically an increased sex ratio was shown (679 males and 551 females, SR = 1.23), but it was not shown in patients not tested cytogenetically (264 males and 275 females, SR = 0.96, different from the expected 297 males and 242 females, P < 0.01).  相似文献   

17.
In order to test whether mutations giving rise to color vision deficiencies are more frequently inherited from older fathers, an exhaustive screening of births in the Namur region has allowed to isolate a sample of 225 descending sons of maternal grandfathers who were older than 45 years at their daughter's birth. The incidence of color vision defects was compared between this set of cases and three control groups totalling 959 boys from independent families. While these comparisons were not conclusive, we propose new hypotheses concerning the population dynamics of color vision deficiencies. Neomutations in X-linked pigment genes may be a marker of the overall genetic load borne by the X chromosome. Selection against such loaded X chromosomes may occur in the second generation, either in the course of embryogenesis, or during female gametogenesis. The future assessment of these novel hypotheses relies on the arbitration of molecular genetics.  相似文献   

18.
Angelman syndrome (AS) is associated with a loss of maternal genetic information, which typically occurs as a result of a deletion at 15q11-q13 or paternal uniparental disomy of chromosome 15. We report a patient with AS as a result of an unbalanced cryptic translocation whose breakpoint, at 15q11.2, falls within this region. The proband was diagnosed clinically as having Angelman syndrome, but without a detectable cytogenetic deletion, by using high-resolution G-banding. FISH detected a deletion of D15S11 (IR4-3R), with an intact GABRB3 locus. Subsequent studies of the proband's mother and sister detected a cryptic reciprocal translocation between chromosomes 14 and 15 with the breakpoint being between SNRPN and D15S10 (3- 21). The proband was found to have inherited an unbalanced form, being monosomic from 15pter through SNRPN and trisomic for 14pter to 14q11.2. DNA methylation studies showed that the proband had a paternal-only DNA methylation pattern at SNRPN, D15S63 (PW71), and ZNF127. The mother and unaffected sister, both having the balanced translocation, demonstrated normal DNA methylation patterns at all three loci. These data suggest that the gene for AS most likely lies proximal to D15S10, in contrast to the previously published position, although a less likely possibility is that the maternally inherited imprinting center acts in trans in the unaffected balanced translocation carrier sister.  相似文献   

19.
Paternal-Sex-Ratio (PSR) is a B chromosome that causes all-male offspring in the parasitoid wasp Nasonia vitripennis. It is only transmitted via sperm of carrier males and destroys the other paternal chromosomes during the first mitotic division of the fertilized egg. Because of haplodiploidy, the effect of PSR is to convert diploid (female) eggs into haploid eggs that develop into PSR-bearing males. The PSR chromosome was previously found to contain several families of repetitive DNA, which appear to be present in local blocks. PSR chromosomes with irradiation-induced deletions have decreased rates of transmission and increased variation in transmission. This study investigates whether these differences in transmission of deletion chromosomes are due to mitotic instability. Two deleton chromosomes (E306 and F316) and the wild-type PSR chromosome were examined. A cytogenetic assay of testes revealed that wild-type PSR males contained the chromosome in 98%–100% of their spermatocytes. Similar counts from carriers of two delection chromosomes were lower and varied between individuals from 50%–100%. One F316 male did not contain the chromosome in any of its spermatocytes although the chromosome was present in somatic tissues based on hybridization to PSR-specific repetitive DNA. A molecular analysis of males found the wild-type PSR chromosome to be present in all somatic tissues. Tissue specific differences in the presence of PSR were found in several males from the two deletion lines. The results show that deletions can result in mosaicism due to increased mitotic instability of PSR. Such individuals sometimes partially or completely fail to transmit the chromosome. Patterns of mosaicism of B chromosomes in other organisms are discussed.by P.B. Moens  相似文献   

20.
The G-polymorphism of metaphase chromosomes of peripheral human lymphocytes and its inheritance in 32 families (268 persons) and 315 unrelated persons after G-staining has been studied. The site of Q-heterochromatine, its size and the length of secondary constrictions were accepted as morphological signs of Q-polymorphic variants of chromosomes. All the three chromosome signs are shown to be inherited according to codominant type and are characteristic features of each separate chromosome. No identical patterns of Q-polymorphic chromosome variants are found among all the persons studied, except the monozygotic twins. According to the data obtained, the question of individualization of each chromosome in the karyotype (3, 4, 13--15, 21, 22) and of each personal individuality in relation to Q-polymorphism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号