首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
  • 1 This study compares small-scale (i.e. neighbourhood) associations among distributions of phytoplankton, zooplankton, and zooplankton grazing rates using a combination of correlations and analyses of spatial patchiness.
  • 2 All zooplankton and phytoplankton populations had patchy distributions. On average, individuals experienced members of their same taxon at a density that was 42% greater than the mean sample density.
  • 3 The various zooplankton taxa experienced different average neighbourhoods, even within the same stratum of the lake. For example, Daphnia galeata mendotae (Birge) experienced phytoplankton concentrations that were nearly 50% greater than those experienced by Daphnia pulicaria (Forbes) at the same depth.
  • 4 The distributions of the various phytoplankton taxa were positively correlated with each other, but the distributions of zooplankton were negatively correlated, or more often, unrelated to each other.
  • 5 Phytoplankton abundance was negatively correlated with zooplankton grazing rates.
  • 6 We hypothesize that while phytoplankton distributions are driven by common external factors, the factors that determine horizontal distributions of zooplankton are species specific. In addition, zooplankton grazing appears at least partially responsible for the generation of patchiness in the distribution of phytoplankton.
  相似文献   

3.
The chemical and biological characteristics of Lake Guiers (Senegal) have changed markedly since the impoundment of the Senegal River (Diama and Manantali dams) and subsequent development of irrigated agriculture in the nineteen eighties. On a longitudinal transect of 10 stations (from south to north), the environmental characteristics and the spatial variability of physicochemical variables, phytoplankton and zooplankton communities were studied. Within a marked south‐north gradient, the southern stations were characterized by the highest conductivity and pH and by the lowest values of suspended solids, chlorophyll‐a concentrations and phytoplankton abundance (mainly Chlorophycea, Cyanobacteria and Bacillariophycea). The spatial distribution of zooplankton showed a clear distinction between the southern zone, characterized by the presence of the rotifers Brachionus falcatus and Conochiloides sp., the cladoceran Bosmina longirostris, the cyclopoid Thermocyclops neglectus and the calanoid Pseudodiaptomus hessei. A co‐inertia analysis clearly showed that environmental factors and phytoplankton drives the spatial distribution of zooplankton communities. The comparison of our data with previous studies suggests a marked change in the biological communities since the impoundment of the Senegal River, with rarefaction of P. hessei and proliferation of the cyclopoid Mesocyclops ogunnus. Several hypotheses are discussed to explain these biological changes. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
1. The zooplankton often undergoes diel horizontal migration (DHM) from the open water to the littoral of shallow lakes, thus avoiding predators in the former. This behaviour has functional impacts within the lake, as it enhances zooplankton survival, increases their control of phytoplankton and tends to stabilise the clear water state. However, most of the evidence supporting this migration pattern comes from cold north temperate lakes, and more evidence from tropical and subtropical areas, as well as from southern temperate areas, is needed. 2. We conducted a field study of the diel horizontal and vertical migration of zooplankton, and the horizontal distribution of potential predatory macroinvertebrates and fish, over two consecutive days in the summer in a temperate lake in the southern hemisphere. We took zooplankton samples at two depths, at three sampling stations (inside beds of aquatic macrophytes, at their edge and in open water) along three transects running from the centre of a bed of Ceratophyllum demersum to open water. At each sampling station, we also took samples of macroinvertebrates and fish and measured physical and chemical environmental variables. 3. Zooplankton (pelagic cladocerans, calanoid copepods and rotifers) avoided the shore, probably because of the greater risk from predators there. Larger and more vulnerable cladocerans, such as Diaphanosoma brachyurum and Moina micrura, were two to four times more abundant in open water than at the edge of or inside beds of macrophytes, respectively, by both day and night. Less vulnerable zooplankton [i.e. of medium body size (Ceriodaphnia dubia) or with the ability to swim fast (calanoid copepods)] were distributed evenly between open water and the edge of the plant beds. Small zooplankton, Bosmina huaronensis and pelagic rotifers, showed an even distribution among the three sampling stations. Accordingly, no DHM of zooplankton occurred, although larger organisms migrated vertically inside C. demersum stands. 4. Macrophytes contained high densities of predatory macroinvertebrates and fish. The predator assemblage, composed of large‐bodied macroinvertebrates (including odonates and shrimps) and small littoral fish, was permanently associated with submerged macrophytes. None of these groups moved outside the plant beds or changed their population structure (fish) over the diel cycle. 5. Submerged macrophyte beds do not represent a refuge for zooplankton in lakes where predators are numerous among the plants, implying a weaker top‐down control of phytoplankton biomass by zooplankton and, consequently, a more turbid lake. The effectiveness of macrophytes as a refuge for zooplankton depends on the associated assemblage of predatory macroinvertebrates and fish among the plants.  相似文献   

5.
6.
7.
8.
9.
  • 1 Planktivorous fish were hypothesised to influence the abundance of algal biomass in lakes by changing zooplankton grazing, affecting zooplankton nutrient recycling and by direct recycling of nutrients to phytoplankton. The relative roles of direct fish effects vs. zooplankton grazing were tested in mesocosm experiments by adding to natural communities large grazing zooplankton (Daphnia carinata) and small planktivorous fish (mosquitofish or juveniles of Australian golden perch).
  • 2 The addition of Daphnia to natural communities reduced the numbers of all phytoplankton less than 30 µm in size, but did not affect total biomass of phytoplankton as large Volvox colonies predominated.
  • 3 The addition of Daphnia also reduced the abundance of some small (Moina, Bosmina, Keratella) and large (adult Boeckella) zooplankton, suggesting competitive interactions within zooplankton.
  • 4 The addition of mosquitofish to communities containing Daphnia further reduced the abundance of some small zooplankton (Moina, Keratella), but increased the numbers of Daphnia and adult Boeckella. In spite of the likely increase in grazing due to Daphnia, the abundance of total phytoplankton and dominant alga Volvox did not decline in the presence of mosquitofish but was maintained at a significantly higher level than in control.
  • 5 The addition of juveniles of golden perch to communities containing Daphnia reduced the abundance of small zooplankton (Moina), increased the abundance of large zooplankton (adult Boeckella) but had no significant effect on Daphnia and total phytoplankton abundance.
  • 6 The results of the present study suggest that some planktivorous fish can promote the growth of phytoplankton in a direct way, probably by recycling nutrients, and even in the presence of large grazers. However, the manifestation of the direct effect of fish can vary with fish species.
  相似文献   

10.
The general features of the horizontal and vertical distributionof the main zooplankton groups in the northern Benguela upwellingregion during a period of abated upwelling in April 1986 arediscussed. Three different types of water were detected: (i)an inshore strip of recently upwelled water; (ii) oceanic waterover the slope; and (iii) Angola Current water penetrating fromthe north. Abundance of the most representative zooplanktongroups, as well as of the total volume of zooplankton, was highestin the shelf region, particularly south of Walvis Bay. Zooplanktonwas most abundant in areas where phytoplankton concentrationswere high and offshore transport was low. There were significantdifferences between the abundance levels of copepods, euphausiids,chaetognaths, and fish eggs and larvae in the different layersof the water column sampled, with the highest concentrationsin the surface layers. The sharpest vertical gradients wereobserved at stations affected by Angolan water, where the thermoclinewas very strong. In contrast, inshore, where stratificationwas low, no such vertical gradients existed.  相似文献   

11.
1. A 2‐year study was carried out on the roles of nutrients and fish in determining the plankton communities of a shallow lake in north‐west Spain. Outcomes were different each year depending on the initial conditions, especially of macrophyte biomass. In 1998 estimated initial ‘per cent water volume inhabited’ (PVI) by submerged macrophytes was about 35%. Phytoplankton biomass estimated as chlorophyll a was strongly controlled by fish, whereas effects of nutrient enrichment were not significant. In 1999 estimated PVI was 80%, no fish effect was observed on phytoplankton biomass, but nutrients had significant effects. Water temperatures were higher in 1998 than in 1999. 2. In the 1998 experiment, cladoceran populations were controlled by fish and cyanobacteria were the dominant phytoplankton group. There were no differences between effects of low (4 g fresh mass m?2) and high (20 g fresh mass m?2) fish density on total zooplankton biomass, but zooplankton biomass was higher in the absence of fish. With the high plant density in 1999, fish failed to control any group of the zooplankton community. 3. Total biovolume of phytoplankton strongly decreased with increased nutrient concentrations in 1998, although chlorophyll a concentrations did not significantly change. At higher nutrient concentrations, flagellate algae became more abundant with likely growth rates that could have overcompensated cladoceran feeding rates. This change in phytoplankton community composition may have been because of increases in the DIN : SRP ratio. Both chlorophyll a concentration and total phytoplankton biovolume increased significantly with nutrients in the 1999 experiment. 4. A strong decline of submerged macrophytes was observed in both years as nutrients increased, resulting in shading by periphyton. This shading effect could account for the plant decline despite lower water turbidity at the very high nutrient levels in 1998.  相似文献   

12.
1. The fish fauna of many shallow Mediterranean Lakes is dominated by small‐bodied exotic omnivores, with potential implications for fish–zooplankton interactions still largely unknown. Here we studied diel variation in the vertical and horizontal distribution of the crustacean plankton in Lake Vela, a shallow polymictic and eutrophic lake. Diel sampling was carried out on three consecutive days along a horizontal transect, including an open‐water station and a macrophyte (Nymphaea alba) bed. Since transparency is a key determinant of the predation risk posed by fish, the zooplankton sampling campaigns were conducted in both the turbid (autumn) and clear water (spring) phases. 2. In the turbid phase, most taxa were homogeneously distributed along the vertical and horizontal axes in the three consecutive days. The only exception was for copepod nauplii, which showed vertical heterogeneity, possibly as a response to invertebrate predators. 3. In the clear water phase, most zooplankton taxa displayed habitat selection. Vertically, the general response consisted of a daily vertical migration (DVM), despite the limited depth (1.6 m). Horizontally, zooplankters showed an overall preference for the pelagic zone, independent of the time of the day. Such evidence is contrary to the postulated role of macrophytes as an anti‐predator refuge for the zooplankton. 4. These vertical (DVM) and horizontal (macrophyte‐avoidance) patterns were particularly conspicuous for large Daphnia, suggesting that predation risk from size‐selective predators (fish) was the main factor behind the spatial heterogeneity of zooplankton in the spring. Thus, the difference in the zooplankton spatial distribution pattern and habitat selection among seasons (turbid and clear water phases) seems to be mediated the predation risk from fish, which is directly related to water transparency. 5. The zooplankton in Lake Vela have anti‐predator behaviour that minimises predation from fish. We hypothesise that, due to the distinct fish community of shallow Mediterranean lakes, aquatic macrophytes may not provide adequate refuge to zooplankters, as seen in northern temperate lakes.  相似文献   

13.
Spatial distribution of phytoplankton in Lake Baikal, Spring 1991   总被引:2,自引:0,他引:2  
  • 1 Studies carried out in Lake Baikal in late spring (late May-early June) 1991 showed marked differences in the species composition and abundance of phytoplankton in different regions of the lake. The south and north basins were characterized by small forms of algae. The middle basin, Maloe More and the shallow waters of the Selenga had species with large cells including Aulacoseira islandica subsp. helvetica, Dinobryon cylindricum and D. divergens.
  • 2 Areas of high biomass were correlated with shallow waters and river inputs. This was especially apparent in the region of the Selenga delta. The vertical distribution of phytoplankton indicated the non-synchronous start of the spring homothermy throughout the lake. Phytoplankton were concentrated in the upper 100 m layer with subsurface maxima resulting from the sinking of large algae.
  • 3 The concentration of phytoplankton biomass in general at this time characterized the lake as moderately productive.
  相似文献   

14.
15.
  1. Filter‐feeding zooplankton in lakes feed on a mixture of phytoplankton, bacteria, and terrestrial particles and the proportions and nutritional value of these components can be highly variable. However, the extent to which food quality interacts with food quantity in affecting overall zooplankton performance is not yet fully resolved.
  2. Here we performed laboratory feeding experiments to test how the performance of the unselective filter feeder Daphnia galeata was affected if various quantities of high‐quality food (the phytoplankton Rhodomonas) were diluted with low‐quality food such as heterotrophic bacteria (Pseudomonas) or terrestrial detritus particles (t‐POM) from the riparian zone of a boreal forest stream. We hypothesised: that increased proportions of bacteria and t‐POM in the diet will lead to decreased survival, somatic growth; and reproduction of Daphnia despite the presence of phytoplankton; that these effects are more pronounced for t‐POM than for heterotrophic bacteria; and that this response is stronger when phytoplankton availability is low.
  3. Increasing the concentrations of Pseudomonas affected Daphnia survival, growth, and reproduction negatively when Rhodomonas was available at intermediate (0.37 mgC/L) and high (0.55 mgC/L) quantities. When Rhodomonas quantity was low (0.22 mgC/L), the addition of Pseudomonas generally resulted in better Daphnia performance except at very high concentrations of the bacterium relative to Rhodomonas. In contrast, the addition of t‐POM was detrimental for overall Daphnia performance at all Rhodomonas concentrations.
  4. Daphnia performance was best described by a model including the interaction between food quality and quantity, with stronger negative effects on Daphnia when high‐quality food was supplemented with t‐POM than with Pseudomonas.
  5. The results indicate that the ability of zooplankton to use low‐quality food is affected by the concurrent availability of high‐quality food. Furthermore, food sources that can be used but do not fulfil dietary requirements of grazers (e.g. bacteria), may still provide nutritional benefits as long as other complementary food components are available in sufficient quantities to compensate for biochemical deficiencies.
  6. Therefore, we conclude that heterotrophic bacteria, but not peat layer t‐POM, can be an important component of zooplankton diets in boreal lakes, especially if the concentration of phytoplankton is low.
  相似文献   

16.
17.
1. We examined the temporal and spatial heterogeneity of zooplankton in lake surface waters during the spring of 3 years in Lake Washington, U.S.A., a large lake with a high production of sockeye salmon fry. 2. We show large within‐season and among‐year variation in the horizontal distribution of temperature, chlorophyll a concentration, and zooplankton in the lake. The main pattern, a delay in zooplankton population increase from the north‐ to the south‐end of the lake, recurred in each year and was persistent within each spring. 3. The delay is primarily caused by the development of a temperature gradient during spring warming, as cold mountain water enters the south end of the lake, while warm water enters the north end via a river draining a nearby lake. Climate factors, such as air temperature and precipitation during winter and spring, appear to influence the extent of the delay of zooplankton increase. 4. If the climate continues to warm, the temporal disconnection in zooplankton development between lake areas immediately influenced by cold river inflow and areas that are influenced by spring warming may increase in magnitude. Thus, the different areas of the lake may not contribute equally to fish production.  相似文献   

18.
This study documents for the first time both vertical and horizontal distribution patterns of the zooplankton community in Lake Kinneret during the period of thermal stratification. The zooplankton distribution patterns were explored in relation to abiotic (temperature, oxygen) and biotic (picocyanobacteria, ciliates, flagellates, phytoplankton, fish) environmental gradients. Sampling was carried out on 6–7 July 1992 at five stations and six depths from nearshore to offshore. Zooplankton abundance and biomass varied from 5 to 267 ind. l–1(mean: 95 ind. l–1), and from 0.1 to 65 d.w. mg m–3(mean: 24 d.w. mg m–3). Zooplankton taxonomic groups (Rotifera, Cladocera, Cyclopoida, Calanoida) and size classes (micro-, meso- and macrozooplankton) showed peaks of maximal density and biomass in the epilimnetic and metalimnetic strata (5 and 14 m). Depth, accounting for 31–39% of total spatial variation, reflected the vertical distribution of zooplankton in relation to temperature and oxygen declines, and the higher concentration of food resources (protists and phytoplankton) in the epilimnion and metalimnion. Onshore–offshore distance, accounting for 17–22% of the total spatial variance, reflected different distribution patterns shown among zooplankton groups and size classes. The macrozooplankton (Copepoda, Cladocera) was more abundant offshore, whereas microzooplankton (Rotifera and nauplii) predominated nearshore. These horizontal distribution patterns were related to small increases in temperature and phytoplankton biomass, and higher concentrations of fish in the littoral zone. Although limited to a short temporal scale, our study indicated that zooplankton spatial distribution in Lake Kinneret during the period of thermal stratification was related to physicochemical, food and predation factors, manifested differently along the vertical and nearshore–offshore gradients.  相似文献   

19.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

20.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号