首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidemiological studies have demonstrated that areca quid chewing can be an independent risk factor for developing esophageal cancer. However, no studies are available to elucidate the mechanisms of how areca induces carcinogenesis in the esophagus. Since the areca nut in Taiwan contains a high concentration of safrole, a well-known carcinogenic agent, we analyzed safrole–DNA adducts by the 32P-postlabelling method in tissue specimens from esophageal cancer patients. In total, we evaluated 47 patients with esophageal cancer (16 areca chewers and 31 non-chewers) who underwent esophagectomy at the National Taiwan University Hospital between 1996 and 2002. Of the individuals with a history of habitual areca chewing (14 cigarette smokers and two non-smokers), one of the tumor tissue samples and five of the normal esophageal mucosa samples were positive for safrole–DNA adducts. All patients positive for safrole–DNA adducts were also cigarette smokers. Such adducts could not be found in patients who did not chew areca, irrespective of their habits of alcohol consumption or cigarette smoking (p < 0.001, comparing the areca chewers with non-chewers). The genotoxicity of safrole was also tested in vitro in three esophageal cell lines and four cultures of primary esophageal keratinocytes. In two of the esophageal keratinocyte cultures, adduct formation was increased by treatment with safrole after induction of cytochrome P450 by 3-methyl-cholanthrene. This paper provides the first observation of how areca induces esophageal carcinogenesis, i.e., through the genotoxicity of safrole, a component of the areca juice.  相似文献   

2.
While the collection of genotoxicity data and insights into potential mechanisms of action for nano-sized particulate materials (NPs) are steadily increasing, there is great uncertainty whether current standard assays are suitable to appropriately characterize potential risks. We investigated the effects of NPs in an in vivo Comet/micronucleus (MN) combination assay and in an in vitro MN assay performed with human blood. We also incorporated additional endpoints into the in vivo study in an effort to delineate primary from secondary mechanisms. Amorphous silica NPs (15 and 55 nm) were chosen for their known reactivity, while gold nano/microparticles (2, 20, and 200 nm) were selected for their wide size range and lower reactivity. DNA damage in liver, lung and blood cells and micronuclei in circulating reticulocytes were measured after 3 consecutive intravenous injections to male Wistar rats at 48, 24 and 4h before sacrifice. Gold nano/microparticles were negative for MN induction in vitro and in vivo, and for the induction of DNA damage in all tissues. Silica particles, however, caused a small but reproducible increase in DNA damage and micronucleated reticulocytes when tested at their maximum tolerated dose (MTD). No genotoxic effects were observed at lower doses, and the in vitro MN assay was also negative. We hypothesize that silica NPs initiate secondary genotoxic effects through release of inflammatory cell-derived oxidants, similar to that described for crystalline silica (quartz). Such a mechanism is supported by the occurrence of increased neutrophilic infiltration, necrosis, and apoptotic cells in the liver, and induction of inflammatory markers TNF-α and IL-6 in plasma at the MTDs. These results were fairly consistent between silica NPs and the quartz control, thereby strengthening the argument that silica NPs may act in a similar, thresholded manner. The observed profile is supportive of a secondary genotoxicity mechanism that is driven by inflammation.  相似文献   

3.
Potassium bromate (KBrO(3)) is strongly carcinogenic in rodents and mutagenic in bacteria and mammalian cells in vitro. The proposed genotoxic mechanism for KBrO(3) is oxidative DNA damage. KBrO(3) can generate high yields of 8-hydroxydeoxyguanosine (8OHdG) DNA adducts, which cause GC>TA transversions in cell-free systems. In this study, we investigated the in vitro genotoxicity of KBrO(3) in human lymphoblastoid TK6 cells using the comet (COM) assay, the micronucleus (MN) test, and the thymidine kinase (TK) gene mutation assay. After a 4h treatment, the alkaline and neutral COM assay demonstrated that KBrO(3) directly yielded DNA damages including DNA double strand breaks (DSBs). KBrO(3) also induced MN and TK mutations concentration-dependently. At the highest concentration (5mM), KBrO(3) induced MN and TK mutation frequencies that were over 30 times the background level. Molecular analysis revealed that 90% of the induced mutations were large deletions that involved loss of heterozygosity (LOH) at the TK locus. Ionizing-irradiation exhibited similar mutational spectrum in our system. These results indicate that the major genotoxicity of KBrO(3) may be due to DSBs that lead to large deletions rather than to 8OHdG adducts that lead to GC>TA transversions, as is commonly believed. To better understand the genotoxic mechanism of KBrO(3), we analyzed gene expression profiles of TK6 cells using Affymetrix Genechip. Some genes involved in stress, apoptosis, and DNA repair were up-regulated by the treatment of KBrO(3). However, we could not observe the similarity of gene expression profile in the treatment of KBrO(3) to ionizing-irradiation as well as oxidative damage inducers.  相似文献   

4.
The estrogenic activity of phenolphthalein and other related triphenylmethane dyes was evaluated in vivo in the immature rat uterus. Phenolphthalein behaved as a partial agonist of estradiol in stimulating the growth of rat uterus. Other specific estrogenic effects of the dye included an increase of the uterine DNA content, histological changes and induction of estrogen-modulated secretory proteins. The progressive introduction of side chains in the triphenylmethane skeleton concomitantly decreased the estrogenic activity. Triphenylmethanes competed with [3H]estradiol for the binding to the estrogen receptor in vitro, the relative binding affinity being correlated with the estrogenic potency observed in vivo. Phenolphthalein also showed antiestrogenic activity that could be overcome by increasing the dose of estradiol.  相似文献   

5.
Wu M  Xing G  Qi X  Feng C  Liu M  Gong L  Luan Y  Ren J 《Mutation research》2012,741(1-2):65-69
Until recently, knowledge about the genotoxicity of roxarsone in vitro or in vivo was limited. This study assessed the genotoxicity of roxarsone in an in vitro system. Roxarsone was tested for potential genotoxicity on V79 cells by a Comet assay and a micronucleus (MN) test, exposing the cells to roxarsone (1-500 μM) and to sodium arsenite (NaAsO?, 20 μM) solutions for 3-48 h. Roxarsone was found to be cytotoxic when assessed with a commercial cell counting kit (CCK-8) used to evaluate cell viability, and moderately genotoxic in the Comet assay and micronucleus test used to assess DNA damage. The Comet metrics (percentages TDNA, TL, TM) increased significantly in a time- and concentration-dependent manner in roxarsone-treated samples compared with PBS controls (P<0.05), while the data from samples treated with 20 μM NaAsO? were comparable to those from 500 μM roxarsone-treated samples. The MN frequency of V79 cells treated with roxarsone was higher than that in the negative control but lower than the frequency in cells treated with 20 μM NaAsO?. A dose- and time-dependent response in MN induction was observed at 10, 50, 100 and 500 μM doses of roxarsone after 12-48 h exposure time. The DNA damage in V79 cells treated with 500 μM roxarsone was similar to cells exposed to 20 μM NaAsO?. The uptake of cells was correlated with the DNA damage caused by roxarsone. This investigation depicts the genotoxic potentials of roxarsone to V79 cells, which could lead to further advanced studies on the genotoxicity of roxarsone.  相似文献   

6.
The use of 17-beta-oestradiol, testosterone, progesterone, zearanol, trenbolone acetate and melengesterol acetate in animal feed as growth promoters has been banned in the European Union since 1989. However, the data available on their genotoxicity is limited. To bridge this gap the present study was carried out with the aim of evaluating these hormones for their ability to induce aneuploidy. Aneuploidy has been recently considered sufficiently important to be included in the routine testing of chemicals and radiation. These types of numerical chromosomal aberrations may arise by at least two mechanisms, chromosome loss and non-disjunction. Over the past few years, the cytokinesis blocked micronucleus (CBMN) technique has evolved into a robust assay for the detection of aneuploidy induction. At the present time, it is the only assay which can reliably detect both chromosome loss and non-disjunction when the basic methodology is coupled with appropriate molecular probing techniques such as immunoflourescent labelling of kinetochores and Fluorescence in situ Hybridisation. In this present study, aneuploidy induction by three groups of hormones was studied using CBMN assay coupled with Fluorescence in situ Hybridisation. The results from the present study demonstrate that 17-beta-oestradiol, diethylstilboestrol, progesterone and testosterone are genotoxic and induce aneuploidy by non-disjunctional mechanism, whereas trenbolone is also genotoxic by a clastogenic mechanism. However, melengesterol acetate and zearanol proved to be non-genotoxic in vitro.  相似文献   

7.
Glutaraldehyde (GA) induces DNA-protein crosslinks (DPX), but conflicting results have been reported with regard to other genotoxic and mutagenic effects in mammalian cells in vitro. We, therefore, characterized the genotoxic and mutagenic potential of GA in V79 cells. Using the alkaline comet assay we demonstrated the induction of DPX by GA (reduction of gamma ray-induced DNA migration) at a concentration of 10 microM and above. The standard comet assay did not reveal a significant DNA strand-breaking activity of GA. Cross-linking concentrations of GA were also cytotoxic, i.e. inhibited cell growth of treated V79 cultures. Interestingly, a small but statistically significant increase in sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (2 and 5 microM). FISH analysis revealed that the majority of GA-induced MN was due to chromosome breaks. We also compared the genotoxic activity of GA to that of formaldehyde (FA). Similar to GA, FA-induced DPX, SCE and MN, but distinct differences exist with regard to the sensitivity of the endpoints and the relationship between genotoxicity and cytotoxicity. However, the differences in genotoxicity cannot readily explain the different carcinogenic activities of the two compounds.  相似文献   

8.
We evaluated the genotoxicity of the food-flavouring agent estragole in V79 cells using the sister chromatid exchange (SCE) assay and the alkaline comet assay. Unexpectedly, we observed an increase in SCE without an exogenous biotransformation system (S9) and a decrease in its presence. Positive results were also observed in the alkaline comet assay without S9, indicating DNA strand breakage. To ascertain repair of damage, we performed the comet assay in V79 cells after two hours of recovery, and observed a reduction of the genotoxic response. Estragole did not produce strand breaks in plasmid DNA in vitro. We then evaluated the formation of DNA adducts in V79 cells by use of the (32)P-postlabelling assay and detected a dose-dependent formation of DNA adducts, which may be responsible for its genotoxicity. We then assayed estragole in the comet assay with two CHO cell lines, a parental AA8 cell line, and an XRCC1-deficient cell line, EM9. Results confirmed the genotoxicity of estragole without biotransformation in both cell lines, although the genotoxicity in EM9 cells compared with that in AA8 cells was not significantly different, suggesting that the XRCC1 protein is not involved in the repair of estragole-induced lesions. Estragole induces apoptosis, but only with high doses (2000μM), and after long treatment periods (24h). Overall, our results suggest that estragole, besides being metabolized to genotoxic metabolites, is a weak direct-acting genotoxin that forms DNA adducts.  相似文献   

9.
The successful validation of the in vitro micronucleus assay by the SFTG now provides the opportunity for this highly cost effective assay to be used to screen chemicals for their ability to induce both structural (clastogenic) and numerical (aneugenic) chromosome changes using interphase cells. The use of interphase cells and a relatively simple experimental protocol provides the opportunity to greatly increase the statistical power of cytogenetic studies on chemical interactions. The application of molecular probes capable of detecting kinetochores and centromeres provides the opportunity to classify mechanisms of micronucleus induction into those which are primarily due to chromosome loss or breakage. When a predominant mechanism of micronucleus induction has been shown to be based upon chromosome loss then further investigation can involve the determination of the role of non-disjunction in the induction of aneuploidy. The binucleate cell modification of the in vitro micronucleus assay can be combined with the use of chromosome specific centromere probes to determine the segregation of individual chromosomes into daughter nuclei. The combination of these methods provides us with powerful tools for the investigation of mechanisms of genotoxicity particularly in the low dose regions.  相似文献   

10.
Micronucleus (MN) induction in erythrocytes of multiple intestinal neoplasia (Min) mice with heterozygous Apc mutation was measured after s.c. injections of acrylamide, glycidamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and colchicine, and compared with wild-type (wt) mice. Since Apc influences microtubule dynamics, we wanted to test whether Min-mice were more sensitive to the production of MN than wild-type mice. We also examined the effect of pre-treatment with cytosine beta-D-arabinofuranoside (Ara C) and hydroxyurea, which inhibit ligation of DNA strand breaks in the repair of DNA adducts. All compounds induced a significant increase in MN in both strains of mice with the following potencies: acrylamide相似文献   

11.
Martin LJ  Liu Z 《Neurochemical research》2002,27(10):1093-1104
We developed a method to measure DNA damage in single motor neurons (MN). A cell fraction enriched in viable -motor neurons was isolated from adult rat spinal cord. This cell preparation was used to measure the vulnerability of the MN genome to different reactive oxygen species (ROS). MN were exposed in vitro to hydrogen peroxide, nitric oxide and peroxynitrite. Specific types of DNA lesions (e.g., abasic sites, single-strand breaks, and double-strand breaks) were measured using single-cell gel electrophoresis (comet assay). The MN genome was very susceptible to attack by ROS. Different ROS induced different DNA damage profiles in MN. MN were also isolated from adult rats with sciatic nerve avulsions to show that DNA damage emerges early during their degeneration in vivo. This study demonstrates that the comet assay is a feasible method for profiling DNA lesions in the genome of single MN. Viable mature MN can be isolated and used for in vitro models of MN genotoxicity and can be isolated from in vivo models of MN degeneration for profiling DNA damage on a single-cell basis.  相似文献   

12.
Micronucleus (MN) induction in erythrocytes of multiple intestinal neoplasia (Min) mice with heterozygous Apc mutation was measured after s.c. injections of acrylamide, glycidamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and colchicine, and compared with wild-type (wt) mice. Since Apc influences microtubule dynamics, we wanted to test whether Min-mice were more sensitive to the production of MN than wild-type mice. We also examined the effect of pre-treatment with cytosine β-D-arabinofuranoside (Ara C) and hydroxyurea, which inhibit ligation of DNA strand breaks in the repair of DNA adducts. All compounds induced a significant increase in MN in both strains of mice with the following potencies: acrylamide < glycidamide < PhIP. No difference in the induction of MN was seen between Min-mice and wt-mice exposed to acrylamide, glycidamide or colchicine without pre-treatment. However, in Min-mice, PhIP treatment induced much less MN than in wt-mice, with about four- and six-fold increase in MN in Min-mice and wt-mice, respectively. A reduced ability to repair PhIP adducts may be the reason for the lower induction of MN in Min-mice. Treatment with Ara C and hydroxyurea, to increase sensitivity, gave more than a four-fold increase in MN, but strongly reduced proliferation. Pre-treatment with Ara C and hydroxyurea made the Min-mice slightly more sensitive to MN induction by glycidamide compared to wt-mice. We conclude that Min-mice are less sensitive than wt-mice to MN induction by PhIP that forms bulky DNA adducts, while Min-mice and wt-mice are equally sensitive to MN induction by acrylamide and glycidamide that form DNA base adducts.  相似文献   

13.
Rare monoclonal antibodies (Abs) can form irreversible complexes with antigens by enzyme-like covalent nucleophile-electrophile pairing. To determine the feasibility of applying irreversible antigen inactivation by Abs as the basis of vaccination against microbes, we studied the polyclonal nucleophilic Ab response induced by the electrophilic analog of a synthetic peptide corresponding to the principal neutralizing determinant (PND) of human immunodeficiency virus type-1 (HIV) gp120 located in the V3 domain. Abs from mice immunized with the PND analog containing electrophilic phosphonates (E-PND) neutralized a homologous HIV strain (MN) approximately 50-fold more potently than control Abs from mice immunized with PND. The IgG fractions displayed binding to intact HIV particles. HIV complexes formed by anti-E-PND IgG dissociated noticeably more slowly than the complexes formed by anti-PND IgG. The slower dissociation kinetics are predicted to maintain long-lasting blockade of host cell receptor recognition by gp120. Pretreatment of the anti-PND IgG with a haptenic electrophilic phosphonate compound resulted in more rapid dissociation of the HIV-IgG complexes, consistent with the hypothesis that enhanced Ab nucleophilic reactivity induced by electrophilic immunization imparts irreversible character to the complexes. These results suggest that electrophilic immunization induces a sufficiently robust nucleophilic Ab response to enhance the anti-microbial efficacy of candidate polypeptide vaccines.  相似文献   

14.
Abs to the prion protein (PrP) can protect against experimental prion infections, but efficient Ab responses are difficult to generate because PrP is expressed on many tissues and induces a strong tolerance. We previously showed that immunization of wild-type mice with PrP peptides and CpG oligodeoxynucleic acid overcomes tolerance and induces cellular and humoral responses to PrP. In this study, we compared Ab and T cell repertoires directed to PrP in wild-type and PrP knockout (Prnp o/o) C57BL/6 mice. Animals were immunized with mouse PrP-plasmid DNA or with 30-mer overlapping peptides either emulsified in CFA or CpG/IFA. In Prnp o/o mice, Abs raised by PrP-plasmid DNA immunization recognized only N-terminal PrP peptides; analyses of Ab responses after PrP peptide/CFA immunization allowed us to identify six distinct epitopes, five of which were also recognized by Abs raised by PrP peptides/CpG. By contrast, in wild-type mice, no Ab response was detected after PrP-plasmid DNA or peptide/CFA immunization. However, when using CpG, four C-terminal peptides induced Abs specific for distinct epitopes. Importantly, immune sera from Prnp o/o but not from wild-type mice bound cell surface PrP. Abs of IgG1 and IgG2b subclasses predominated in Prnp o/o mice while the strongest signals were for IgG2b in wild-type mice. Most anti-PrP Th cells were directed to a single epitope in both Prnp o/o and wild-type mice. We conclude that endogenous PrPC expression profoundly affects the Ab repertoire as B cells reactive for epitopes exposed on native PrPC are strongly tolerized. Implications for immunotherapy against prion diseases are discussed.  相似文献   

15.
Phosphonate ester probes for proteolytic antibodies   总被引:2,自引:0,他引:2  
The reactivity of phosphonate ester probes with several available proteolytic antibody (Ab) fragments was characterized. Irreversible, active site-directed inhibition of the peptidase activity was evident. Stable phosphonate diester-Ab adducts were resolved by column chromatography and denaturing electrophoresis. Biotinylated phosphonate esters were applied for chemical capture of phage particles displaying Fv and light chain repertoires. Selected Ab fragments displayed enriched catalytic activity inhibitable by the selection reagent. Somewhat unexpectedly, a phosphonate monoester also formed stable adducts with the Abs. Improved catalytic activity of phage Abs selected by monoester binding was evident. Turnover values (kcat) for a selected Fv construct and a light chain against their preferred model peptide substrates were 0.5 and 0.2 min(-1), respectively, and the corresponding Michaelis-Menten constants (Km) were 10 and 8 microm. The covalent reactivity of Abs with phosphonate esters suggests their ability to recapitulate the catalytic mechanism utilized by classical serine proteases.  相似文献   

16.
Infusion reactions are a major side effect of the administration of therapeutic Abs and are the result of a complex immune reaction. In this study, we report that substitutions of Fc amino acids in the anti-HLA-DR Ab HD8 reduce its ability to induce infusion reactions in rats and monkeys. We first showed that i.v. administration of IgG1- and IgG2-subclass HD8 Abs induces severe infusion reactions in monkeys. These Abs express strong complement-dependent cytotoxicity (CDC), and in vivo depletion of complement in rats by pretreatment with cobra venom factor abrogated the lethal infusion reactions generated by HD8-IgG1. Thus, the infusion reactions appear to be largely driven by the complement system. To reduce the CDC function of HD8-IgG1, its Fc region was modified by two amino acid substitutions at Pro(331)Ser and Lys(322)Ala. The modified Ab was incapable of expressing CDC in vitro and did not induce severe infusion reactions in rats and monkeys, even at extremely high doses. The modified Ab retained its Ab-dependent cellular cytotoxicity function as well as its antitumor activity in a tumor-bearing mouse model. In summary, complement appears to drive infusion reactions, and modifications that eliminate the CDC activity of an Ab also reduce its ability to induce infusion reactions.  相似文献   

17.
Sulfapyridine (SP) and 5-aminosalicylic acid (5-ASA) are the two primary metabolites of the anti-inflammatory drug salicylazosulfapyridine (SASP). These two metabolites were studied for induction of chromosomal damage in mammalian cells, in vitro and in vivo, in an attempt to understand better the genetic effects produced by SASP in humans and laboratory mice. To this end, SP and 5-ASA were tested for induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Abs) in Chinese hamster ovary (CHO) cells in vitro. In addition, they were tested in vivo for induction of micronuclei (MN) in mouse bone marrow polychromatic erythrocytes (PCE). SP gave positive results in the in vitro SCE test and the in vivo MN test, and negative results in the in vitro Abs test. 5-ASA was negative in all three tests. These results indicate that it is the SP metabolite of SASP that is necessary for the induction of chromosomal damage reported to occur in humans and mice after treatment with SASP.  相似文献   

18.
《Mutation Research Letters》1993,301(4):275-279
Further to a previous genotoxicity study, we analyzed sister-chromatid exchange (SCE) and DNA-repair induction (V79 and EUE cells in vitro) and DNA damage (rat liver in vivo) with regard to N-acryloyl-N-phenylpiperazine (AcrNPP), a chemical proposed for biomaterial polymerization which contains an aromatic tertiary amino function in a piperazine cycle. This chemical induced SCEs in a dose-dependent fashion (up to ≈ 3.7 times the control value), while it was negative for DNA-repair induction and weakly yeat significantly positive for in vivo DNA damage (maximum increase ≈ 1.4 times the control value). Taken together with our previous genotoxicity data on AcrNPP and structurally related compounds, the present results confirm that aneuploidy is a possible major effect of aromatic tertiary amines. As regards exposure to aneugenic agents, considerations on cancer risk evaluation are presented.  相似文献   

19.
2-Methoxyaniline (o-anisidine) is a urinary bladder carcinogen in both mice and rats. Since the urinary bladder contains substantial peroxidase activity, we investigated the metabolism of this carcinogen by prostaglandin H synthase (PHS), a prominent enzyme in the urinary bladder, and lactoperoxidase as model mammalian peroxidases. Horseradish peroxidase (HRP)-mediated oxidation of o-anisidine was also determined and compared with the reactions catalyzed by mammalian peroxidases. All three peroxidases oxidized o-anisidine via a radical mechanism. Using HPLC combined with electrospray tandem mass spectrometry, we determined that peroxidases oxidized o-anisidine to a diimine metabolite, which subsequently hydrolyzed to form a quinone imine. Two additional metabolites were identified as a dimer linked by an azo bond and another metabolite consisting of three methoxybenzene rings, which exact structure has not been identified as yet. Using [14C]-labeled o-anisidine, we observed substantial peroxidase-dependent covalent binding of o-anisidine to DNA, tRNA and polydeoxynucleotides [poly(dX)]. The 32P-postlabeling assay (a standard procedure and enrichment of adducts by digestion with nuclease P1 or by extraction into 1-butanol prior to 32P-labeling) was employed as the second method to detect and quantitate binding of o-anisidine to DNA. Using these versions of the 32P-postlabeling technique we did not observe any DNA adducts derived from o-anisidine. The o-anisidine-DNA adducts became detectable only when DNA modified by o-anisidine was digested using three times higher concentrations of micrococcal nuclease and spleen phosphodiesterase (MN/SPD). We found deoxyguanosine to be the target for o-anisidine binding in DNA using poly(dX) and deoxyguanosine 3′-monophosphate (dGp). A diimine metabolite of o-anisidine is the reactive species forming adducts in dGp. The results strongly indicate that peroxidases play an important role in o-anisidine metabolism to reactive species, which might be responsible for its genotoxicity, and its carcinogenicity to the urinary bladder in rodents. The limitation of the 32P-postlabeling technique to analyze DNA adducts derived from o-anisidine as a means to estimate its genotoxicity is discussed.  相似文献   

20.
Styrene (CAS No. 100-42-5) is an important industrial chemical for which positive results have been reported in in vitro and in vivo genotoxicity assays. Styrene-exposed workers have been studied extensively over two decades for the induction of various types of genotoxic effects. The outcomes of these studies have been conflicting, and where positive responses have been reported, it has proved difficult to demonstrate clear relationships between levels of damage reported and exposure levels. In this review, we have assessed studies addressing mutagenicity (chromosome aberrations, micronuclei and gene mutations) and other endpoints (sister chromatid exchanges, DNA breaks and DNA adducts) using criteria derived from the IPCS guidelines for the conduct of human biomonitoring studies. Based on the re-evaluated outcomes, the data are not convincing that styrene induces gene mutations. The evidence for induction of clastogenicity in occupationally exposed workers is less clear, with a predominant lack of induction of micronuclei in different studies, but conflicting responses in chromosome aberration assays. The results of numerous studies on sister chromatid exchanges do not provide evidence of a clear positive response, despite these being induced in animals exposed to styrene at high concentrations. However, there is evidence that both DNA adducts and DNA single strand breaks are induced in styrene workers. These types of damage are considered indicative of exposure of the target cells and interaction with cellular DNA but do not necessarily result in heritable changes. There is evidence that the metabolism of styrene in humans is affected by genetic polymorphisms of metabolizing genes and that these polymorphisms affect the outcome of in vitro mutagenicity studies on styrene. Therefore, studies that have addressed the potential of this factor to affect in vivo responses were considered. To date, there are no consistent relationships between genetic polymorphisms and induction of genotoxicity by styrene in humans, but further work is warranted on larger samples. The analyses of individual studies, together with a consideration of dose-response relationships and the lack of a common profile of positive responses for the various endpoints in different studies, provide no clear evidence that styrene exposure in workers results in detectable levels of mutagenic damage. However, evidence of exposure to genotoxic metabolites is demonstrated by the formation of DNA adducts and strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号