首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arietin, an Arg-Gly-Asp containing peptide from venom of Bitis arietans, inhibited aggregation of platelets stimulated by a variety of agonists with a similar IC50, 1.3-2.7.10(-7) M. It blocked aggregation through the interference of fibrinogen binding to fibrinogen receptors on platelet surface. In this paper, we further demonstrated that arietin had no significant effect on the intracellular mobilization of Ca2+ in Quin2-AM-loaded platelets stimulated by thrombin. It inhibited 125I-fibrinogen binding to ADP-stimulated platelets in a competitive manner (IC50, 1.1.10(-7) M). 125I-arietin bound to unstimulated, ADP-stimulated and elastase-treated platelets in a saturable manner and its Kd values were estimated to be 3.4.10(-7), 3.4.10(-8) and 6.5.10(-8) M, respectively, while the corresponding binding sites were 46,904, 48,958 and 34,817 per platelet, respectively. Arg-Gly-Asp-Ser (RGDS) inhibited 125I-arietin binding to ADP-stimulated platelets in a competitive manner. RGD-containing peptides, including trigramin and rhodostomin, EDTA and monoclonal antibody, 7E3, raised against glycoprotein IIb-IIIa complex, inhibited 125I-arietin binding to ADP-stimulated platelets, indicating that the binding sites of arietin appear to be located at or near glycoprotein IIb-IIIa complex. In conclusion, arietin and other RGD-containing trigramin-like peptides preferentially bind to the fibrinogen receptors associated with glycoprotein IIb-IIIa complex of the activated platelets, thus leading to the blockade of fibrinogen binding to its receptors and subsequent aggregation. The presence of RGD of arietin is essential for the expression of its biological activity. Its binding sites are overlapped with those of trigramin, rhodostomin and the monoclonal antibody, 7E3.  相似文献   

2.
Exposure of binding sites for vitronectin on platelets following stimulation   总被引:11,自引:0,他引:11  
Vitronectin is a glycoprotein that mediates cell adhesion and spreading in a number of cell culture systems. Liposomes containing platelet glycoproteins IIb-IIIa complex have been shown to bind vitronectin-coated surfaces through an Arg-Gly-Asp cell attachment mechanism. We examined the expression of the binding sites for vitronectin on the surface of intact, resting platelets and following stimulation. 125I-Labeled vitronectin bound specifically in a saturable manner to platelets treated with physiological concentrations of thrombin. The binding reached saturation at 100 nM concentration, and, at saturation, approximately 5000 specific binding sites were detected per platelet. The binding was divalent cation-dependent and only partially reversible after complete saturation. A synthetic hexapeptide containing the Arg-Gly-Asp sequence inhibited vitronectin binding to platelets. A monoclonal antibody against platelet glycoprotein IIb-IIIa complex also inhibited the binding of vitronectin to stimulated platelets. These data suggest that platelets possess an inducible divalent cation-dependent receptor for vitronectin and that the glycoprotein IIb-IIIa complex is involved in the expression of the vitronectin receptor.  相似文献   

3.
We have found that the form of glycoprotein (GP) IIb-IIIa (integrin alpha IIb beta 3) expressed on nonstimulated platelets is a functional receptor that mediates selective and irreversible adhesion to immobilized fibrinogen. This occurs even in the presence of the elevated intracellular cAMP levels induced by prostaglandin E1 or after inhibition of protein kinase C activity by sphingosine. In the absence of inhibitors, platelets adhering to fibrinogen through GP IIb-IIIa become fully activated and aggregate with one another. Immobilized von Willebrand factor (vWF), in contrast, is recognized by nonstimulated platelets through another receptor, GP Ib. This interaction leads to a change in the ligand recognition specificity of GP IIb-IIIa that can then bind to immobilized vWF and mediate irreversible platelet adhesion and aggregation; this process, however, is inhibited by elevated intracellular cAMP levels or blockade of protein kinase C activity. Therefore, GP Ib and GP IIb-IIIa induce platelet activation through the selective recognition of immobilized vWF and fibrinogen, respectively, in the absence of exogenous agonists. Moreover, "nonactivated" and "activated" GP IIb-IIIa exhibits distinctly different reactivity toward surface-bound vWF, and the functional switch can be induced by the binding of vWF to GP Ib. These findings demonstrate the modulation of platelet function by two different adhesion receptors, GP Ib and GP IIb-IIIa, as well as the distinct dual role of the latter as the necessary common mediator of irreversible adhesion and aggregation on both fibrinogen and vWF.  相似文献   

4.
The ability of different ligands of glycoprotein (GP) IIb-IIIa (alphaIIb/beta3-integrin) to support platelet aggregation stimulated by activating anti-GP IIb-IIIa monoclonal antibody (monoAB) CRC54 has been investigated. Antibody CRC54 stimulated aggregation of washed platelets not only in the presence of fibrinogen, the main GP IIb-IIIa ligand, but also in the presence of von Willebrand factor (vWF). Unlike these ligands, fibronectin failed to support CRC54-induced aggregation. Fibrinogen and vWF dependent platelet aggregation was completely suppressed by GP IIb-IIIa antagonists--preparations Monafram (F(ab')2 fragments of monoAB that blocked GP IIb-IIIa receptor activity) and aggrastat (RGD-like peptidomimetic). However, aggregation stimulated in the presence of vWF was also completely inhibited by monoAB AK2 directed against GP Ib and capable of blocking its binding with vWF. CRC54-induced aggregation of platelets from patient with GP Ib deficiency in the presence of vWF was significantly lower than aggregation of platelets from normal donors and was not inhibited by anti-GP Ib antibody but still blocked by GP IIb-IIIa antagonist Monafram. Monafram also suppressed CRC54-stimulated platelet adhesion to plastic-adsorbed fibrinogen, vWF, and fibronectin. Unlike CRC54-induced platelet aggregation supported by fluid phase vWF, CRC54-induced adhesion to adsorbed vWF was not affected by anti-GP Ib antibody. Aggregation induced by CRC54 in the presence of fibrinogen and vWF was only partially suppressed by prostaglandin E1, an inhibitor of platelet activation, and was associated with serotonin release from platelet granules only when Ca2+ concentration was decreased from 1 mM (physiological level) to 0.1 mM. The data indicate that vWF supports CRC54-induced platelet aggregation via interaction with two receptors--GP IIb-IIIa and GP Ib. Aggregation induced by CRC54 in the presence of vWF or fibrinogen is only partially dependent on platelet activation and is accompanied with granule secretion only at low Ca2+ concentrations.  相似文献   

5.
C S Chen  S H Chou  P Thiagarajan 《Biochemistry》1988,27(16):6121-6126
The binding of fibrinogen to activated platelets leads to platelet aggregation. Fibrinogen has multiple binding sites to platelet membrane glycoprotein IIb-IIIa complex. At least two well-defined sequences in fibrinogen, Arg-Gly-Asp sequence of A alpha 95-97 and A alpha 572-574 and gamma 400-411, have been shown to interact with glycoprotein IIb-IIIa. A possible binding site on the amino-terminal end of fibrinogen to platelet glycoprotein IIb-IIIa has also been reported. In this paper the effect of synthetic peptides derived from the amino-terminal end of the B beta chain on platelet aggregation and fibrinogen binding has been examined. B beta 15-42 peptide inhibits platelet aggregation and 125I-fibrinogen binding to activated platelets in a dose-dependent manner. Since B beta 15-42 contains a previously identified fibrinogen binding site, B beta 15-18, exposed by thrombin cleavage of native fibrinogen, we also examined the effect of B beta 15-18, B beta 19-42, and B beta 1-14 (fibrinopeptide B) on platelet aggregation and fibrinogen binding. Synthetic fibrinopeptide B and B beta 15-18 had no effect on platelet aggregation and fibrinogen binding while B beta 19-42 retained the inhibitory effect. When fibrinogen is chromatographed on a column of agarose-bound B beta 15-42, a cation-dependent retention of fibrinogen on the peptide column was observed, and fibrinogen was eluted from the column by B beta 15-42 but not by B beta 1-14. Under the same conditions, platelet glycoprotein IIb-IIIa was not retained in the column. Thus, the observed inhibitory effect is due to its interaction with fibrinogen rather than to platelet glycoprotein IIb-IIIa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A conformation-dependent epitope of human platelet glycoprotein IIIa.   总被引:2,自引:0,他引:2  
This study explores conformational states of human platelet glycoprotein IIIa (GP IIIa) and possible mechanisms of fibrinogen receptor exposure. D3GP3 is an IgG1, kappa monoclonal antibody generated against purified GP IIIa and found to be specific for GP IIIa by immunoprecipitation and Western blot analysis. The binding of D3GP3 to resting platelets caused fibrinogen binding (approximately 5,000 molecules/platelet) and platelet aggregation but not secretion. Platelets express 40,000-50,000 GP IIb-IIIa molecules in their surface membranes. However, resting platelets only bound approximately 5,000 D3GP3 molecules/platelet. D3GP3 binding to platelets could be increased 2-3-fold by dissociation of the GP IIb-IIIa complex with 5 mM EDTA or by occupying the fibrinogen receptor with either RGDS peptides or fibrinogen. Platelet stimulation with ADP in the absence of fibrinogen did not cause increased D3GP3 binding above control levels. These data suggest that 1) GP IIb-IIIa can exist in multiple conformations in the platelet membrane, 2) D3GP3 binding to GP IIIa can expose the fibrinogen receptor, 3) the binding of either RGDS peptides or fibrinogen causes exposure of the D3GP3 epitope, and 4) platelet activation in the absence of ligand does not induce the same conformational changes in GP IIb-IIIa as does receptor occupancy by RGDS peptides or fibrinogen.  相似文献   

7.
Soluble fibrinogen binding to the glycoprotein IIb-IIIa complex (integrin alpha IIb beta 3) requires platelet activation. The intracellular mediator(s) that convert glycoprotein IIb-IIIa into an active fibrinogen receptor have not been identified. Because the lipid composition of the platelet plasma membrane undergoes changes during activation, we investigated the effects of lipids on the fibrinogen binding properties of purified glycoprotein IIb-IIIa. Anion exchange chromatography of lipids extracted from platelets exposed to thrombin or other platelet agonists resolved an activity that increased fibrinogen binding to glycoprotein IIb-IIIa. A monoester phosphate was important for activity, and phosphatidic acid coeluted with the peak of activity. Purified phosphatidic acid dose-dependently promoted a specific interaction between glycoprotein IIb-IIIa and fibrinogen which possessed many but not all of the properties of fibrinogen binding to activated platelets. Phosphatidic acid appeared to increase the proportion of fibrinogen binding-competent glycoprotein IIb-IIIa complexes without altering their affinity for fibrinogen. The effects of phosphatidic acid were a result of specific structural properties of the lipid and were not mimicked by other phospholipids. Lysophosphatidic acid, however, was a potent inducer of fibrinogen binding to glycoprotein IIb-IIIa. These results demonstrate that specific lipids can affect fibrinogen binding to purified glycoprotein IIb-IIIa and suggest that the lipid environment has the potential to influence fibrinogen binding to its receptor.  相似文献   

8.
Fibronectin binds to specific receptors on the surface of washed, thrombin-activated platelets. Evidence suggests that these receptors are closely associated with the platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa). To determine whether GP IIb-IIIa itself can form a platelet receptor for fibronectin, we used a filtration assay to examine the interaction of purified fibronectin with purified GP IIb-IIIa incorporated into phospholipid vesicles. 125I-Fibronectin binding to the phospholipid vesicles required the presence of incorporated GP IIb-IIIa and was specific, time-dependent, reversible, saturable, and divalent cation-dependent (Mg2+ greater than Ca2+). The dissociation constant for 125I-fibronectin binding to the GP IIb-IIIa-containing vesicles in the presence of 2 mM MgCl2 was 87 nM. Proteins or peptides that inhibit 125I-fibronectin binding to whole platelets also inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. Thus, specific 125I-fibronectin binding was inhibited by excess unlabeled fibrinogen or fibronectin, the anti-GP IIb-IIIa monoclonal antibody 10E5, the decapeptide from the carboxyl terminus of the fibrinogen gamma-chain, and the tetrapeptide Arg-Gly-Asp-Ser from the cell-binding domain of fibronectin. In contrast to results obtained using whole platelets, unlabeled fibronectin inhibited 125I-fibronectin binding to the GP IIb-IIIa vesicles. These results show that 125I-fibronectin binds directly to purified GP IIb-IIIa with most of the previously reported properties of 125I-fibronectin binding to washed, thrombin-stimulated platelets. Thus, GP IIb-IIIa has the potential to function as a platelet receptor for fibronectin as well as for fibrinogen.  相似文献   

9.
Several lines of evidence indicate that the platelet membrane glycoprotein IIb-IIIa complex (GP IIb-IIIa) is necessary for the expression of platelet fibrinogen receptors. The purpose of the present study was to determine whether purified GP IIb-IIIa retains the properties of the fibrinogen receptor on platelets. Glycoprotein IIb-IIIa was incorporated by detergent dialysis into phospholipid vesicles composed of 30% phosphatidylcholine and 70% phosphatidylserine. 125I-Fibrinogen binding to the GP IIb-IIIa vesicles, as measured by filtration, had many of the characteristics of 125I-fibrinogen binding to whole platelets or isolated platelet plasma membranes: binding was specific, saturable, reversible, time dependent, and Ca2+ dependent. The apparent dissociation constant for 125I-fibrinogen binding to GP IIb-IIIa vesicles was 15 nM, and the maximal binding capacity was 0.1 mol of 125I-fibrinogen/mol of GP IIb-IIIa. 125I-Fibrinogen binding was inhibited by amino sugars, the GP IIb and/or IIIa monoclonal antibody 10E5, and the decapeptide from the carboxyl terminus of the fibrinogen gamma chain. Furthermore, little or no 125I-fibrinogen bound to phospholipid vesicles lacking protein or containing proteins other than GP IIb-IIIa (i.e. bacteriorhodopsin, apolipoprotein A-I, or glycophorin). Also, other 125I-labeled plasma proteins (transferrin, orosomucoid) did not bind to the GP IIb-IIIa vesicles. These results demonstrate that GP IIb-IIIa contains the platelet fibrinogen receptor.  相似文献   

10.
Platelet membrane glycoprotein IIb-IIIa has been widely studied in the last years because of its role as an activation-dependent, adhesive protein receptor. Recently we demonstrated that occupancy of glycoprotein IIb-IIIa-receptor sites by specific ligands exerts an inhibitory effect on platelet responses induced by mild stimulation, leading us to suppose that this event may interact with activation pathways. Although the mechanisms of signal transduction in human platelets are not completely elucidated, the hypothesis that GTP-binding proteins are involved is generally accepted. Our results demonstrate that platelet ConA receptors, known to be located mainly on GP IIb-IIIa, are able to bind [35S]GTP gamma S; the GTP-binding activity is specific and is due to the association with the receptors of two G-proteins, with apparent molecular masses of 25 and 21 kDa, respectively. After the purification of GP IIb-IIIa, a glycoprotein complex electrophoretically pure was obtained that was still associated with a GTP-binding activity, migrating in SDS-polyacrylamide gel electrophoresis as a narrow band of about 21 kDa.  相似文献   

11.
S A Santoro  W J Lawing 《Cell》1987,48(5):867-873
Two distinct sequences of amino acids, RGDS and HHLGGAKQAGDV, each inhibit the binding of fibrinogen, fibronectin, and von Willebrand factor to the platelet membrane glycoprotein IIb-IIIa complex. We have employed radiolabeled, photoactivatable aryl azide derivatives of the two sequences to explore the relationship between the binding sites for these peptides on the glycoprotein IIb-IIIa complex. Each probe specifically labeled only the glycoprotein IIb-IIIa complex of intact platelets. Since each peptide inhibited labeling of the receptor complex by the other, the peptides compete for binding sites on the receptor complex. However, the binding sites do not appear to be identical. Whereas the RGDS probe specifically labeled both glycoproteins IIb and IIIa, the HHLGGAKQA-GDV probe specifically labeled only glycoprotein IIb.  相似文献   

12.
《The Journal of cell biology》1990,111(6):3117-3127
Treatment of platelets with thrombin was shown previously to induce rapid changes in tyrosine phosphorylation of several platelet proteins. In this report, we demonstrate that a variety of agonists which induce platelet aggregation also stimulate tyrosine phosphorylation of three proteins with apparent molecular masses of 84, 95, and 97 kD. Since platelet aggregation requires the agonist-induced activation of an integrin receptor (GP IIb-IIIa) as well as the binding of fibrinogen to this receptor, we examined the relationship between tyrosine phosphorylation and the function of GP IIb-IIIa. When platelets were examined under conditions that either precluded the activation of GP IIb-IIIa (prior disruption of the complex by EGTA at 37 degrees C) or the binding of fibrinogen (addition of RGDS or an inhibitory mAb), tyrosine phosphorylation of the 84-, 95-, and 97-kD proteins was not observed. However, although both GP IIb-IIIa activation and fibrinogen binding were necessary for tyrosine phosphorylation, they were not sufficient since phosphorylation was observed only under conditions in which the activated platelets were stirred and allowed to aggregate. In contrast, tyrosine phosphorylation was not dependent on another major platelet response, dense granule secretion. Furthermore, granule secretion did not require tyrosine phosphorylation of this set of proteins. These experiments demonstrate that agonist-induced tyrosine phosphorylation is linked to the process of GP IIb-IIIa-mediated platelet aggregation. Thus, tyrosine phosphorylation may be required for events associated with platelet aggregation or for events that follow aggregation.  相似文献   

13.
Platelet membrane glycoproteins (GP) IIb and IIIa have been identified as platelet aggregation sites. These glycoproteins form a heterodimer complex (GP IIb-IIIa) in the presence of Ca2+. To study the morphology of this glycoprotein complex in membranes, we incorporated GP IIb-IIIa into artificial phospholipid vesicles using a detergent (octyl glucoside) dialysis procedure. Phosphatidylserine-enriched vesicles (70% phosphatidylserine, 30% phosphatidylcholine) incorporated approximately 90% of the GP IIb-IIIa as determined by sucrose flotation. Glycoprotein IIb-IIIa incorporation into the vesicles was unaffected by ionic strength, suggesting a hydrophobic interaction between the glycoprotein and the phospholipid. In both intact platelets or phospholipid vesicles, GP IIb was susceptible to neuraminidase hydrolysis, indicating that most of the glycoprotein complexes were oriented toward the outside of the platelets or vesicles. The morphology of GP IIb-IIIa in the phospholipid vesicles was observed by negative staining electron microscopy. Individual GP IIb-IIIa complexes appeared as spikes protruding as much as 20 nm from the vesicle surface. Each spike consisted of a GP IIb "head," which was distal to the vesicle and was supported by the GP IIIa "tails." The GP IIb-IIIa complex appeared to be attached to the vesicle membrane by the tips of the GP IIIa tails. Treatment of vesicles with EGTA dissociated the GP IIb-IIIa complex. The dissociated glycoproteins remained attached to the phospholipid vesicles, indicating that both GP IIb and GP IIIa contain membrane-attachment sites. These data suggest a possible structural arrangement of the GP IIb-IIIa complex in whole platelets.  相似文献   

14.
Glycoprotein IIb-IIIa is an abundant platelet receptor of the integrin family that plays a primary role in platelet aggregation. It exists on the platelet surface predominantly in a resting or inactive conformation that is converted to an active binding competent conformation upon platelet activation. There is much interest in studying the difference between active and inactive GP IIb-IIIa, developing therapeutic agents targeted towards GP IIb-IIIa and developing diagnostic assays for antibodies that recognize epitopes on GP IIb-IIIa. We present here the development of a large-scale process for purifying active GP IIb-IIIa from human platelets. The procedure results in 25mg batch sizes of high purity and activity. Additionally, the effects of detergent concentration and impurities such as IgG on ELISA assays are examined.  相似文献   

15.
Binding of ligands that contain Arg-Gly-Asp to adhesion receptors induces cell spreading and aggregation and alters gene expression, possibly due to conformational changes within occupied adhesion receptors. PMI-1 is a monoclonal antibody which reacts with the platelet fibrinogen receptor, glycoprotein IIb-IIIa, and reports such a conformational change. ADP stimulation of platelets results in a fibrinogen-dependent increase in binding of the PMI-1 antibody. Peptides containing Arg-Gly-Asp also reversibly increase the binding of this antibody to cells and to purified glycoprotein IIb-IIIa. The PMI-1 antibody inhibits platelet adhesion and spreading on certain substrata (Shadle, P. J., Ginsberg, M. H., Plow, E. F., and Barondes, S. H. (1984) J. Cell Biol. 99, 2056-2060); thus this occupancy-modulated site may participate in adhesive function.  相似文献   

16.
Platelet membrane glycoprotein IIb-IIIa exists as a calcium-dependent complex of two large peptides (designated IIb and IIIa) in Triton X-100 solutions, but it remains unknown if these peptides are subunits of one glycoprotein or are actually two individual glycoproteins in the intact platelet membrane. We used crossed immunoelectrophoresis to define the epitopes of two monoclonal antibodies to IIb-IIIa, then used these antibodies to study the structural and functional organization of IIb and IIIa in the platelet membrane. Human platelets solubilized in Triton X-100 were electrophoresed through an intermediate gel containing 125I-monoclonal IgG, then into an upper gel containing rabbit anti-human platelet antibodies. Our previously characterized antibody. Tab, and a new monoclonal antibody, T10, both bound to the immunoprecipitate corresponding to the IIb-IIIa complex. When platelets were electrophoresed after solubilization in 5 mM EDTA, 125I-Tab bound to the dissociated IIb polypeptide, but not to IIIa. In contrast, 125-I-T10 did not react with either IIb or IIIa. Thus, Tab recognizes a determinant on IIb, while T10 recognizes a determinant created only after the association of IIb and IIIa. Gel-filtered platelets from six normal donors bound 50,600 +/- 5,600 125I-T10 molecules/platelet and 47,800 +/- 11,200 125I-Tab molecules/platelet, consistent with IIb-IIIa being a heterodimer. 125I-T10 binding was identical in unactivated platelets and platelets stimulated with 10 microM ADP. However, platelets did not aggregate or bind 125I-fibrinogen until ADP was added. T10, but not Tab or nonimmune mouse antibody, inhibited ADP-induced platelet aggregation and 125I-fibrinogen binding. Our findings suggest that IIb and IIIa exist as subunits of a single membrane glycoprotein in unstimulated platelets. Fibrinogen binding appears to require not only the interaction of IIb and IIIa, but also some additional change occurring after platelet activation.  相似文献   

17.
Human platelet glycoproteins IIb and IIIa form the receptor for fibrinogen, von Willebrand factor and fibronectin. Isolated human glycoproteins IIb-IIIa are phosphorylated by purified pp60c-src protein tyrosine kinase. Analysis of the phosphorylated proteins on SDS-PAGE showed that under reducing conditions both phosphoproteins change their relative molecular masses from 135 to 120 kDa and from 97 to 105 kDa, which are characteristic properties of glycoproteins IIb-IIIa. Phosphorylated proteins could be immunoprecipitated with an antiserum against glycoproteins IIb-IIIa but not by control serum. Some kinetic properties of the glycoprotein phosphorylations are also investigated. How the glycoprotein IIb-IIIa complex acquires its receptor activity in stimulated platelets is unknown; however, phosphorylation could be an important mechanism.  相似文献   

18.
Monoclonal antibody P256, which is specific for glycoprotein IIb-IIIa complex, was found to induce aggregation of normal platelets in plasma. The mechanism of platelet activation induced by this monoclonal antibody was thoroughly studied. The divalent binding to the IIb-IIIa molecule was necessary for triggering aggregation since Fab' fragments did not induce aggregation as did IgG and F(ab')2 fragments; however, F(ab')2 did not induce the release as did the whole IgG. P256-induced aggregation was accompanied by release of all three granule constituents, namely dense granules, alpha-granules and lysosomes, with parallel kinetics showing half-maximum release 50 s after addition of P256. Thromboxane synthesis was initiated at the same time. Using 32P-prelabeled platelets, no variation in level of [32P]phosphatidylinositol 4,5-bisphosphate could be detected in the first minute after P256 addition, indicating no activation of the calcium-independent phospholipase C specific for polyphosphoinositol phospholipid. P256 induced a calcium mobilization as measured by Indo-1 fluorescence of about the third of that measured in the presence of a thrombin concentration giving the same intensity of aggregation. P256 induced phosphorylation of the myosin light chain p20 and of the main substrate of protein kinase C, p43. Addition of aspirin inhibited almost totally calcium mobilization and partially aggregation, release and protein phosphorylations. By contrast, in the absence of external calcium, although no aggregation could occur, the release reaction was only partially reduced. In this activation, the glycoprotein IIb-IIIa complex thus appears to play a role in modulating platelet response, not only via calcium fluxes but also in activating protein kinase C responsible for p43 phosphorylation.  相似文献   

19.
We have previously established that the mitogenic effect of fibrinogen on hemopoietic cell lines Raji and JM is mediated via a specific receptor (Levesque, J.-P. et al.: Proc. Natl. Acad. Sci. USA 83:6494-6498, 1986). In this study, we have further characterized the fibrinogen domain involved in the binding to the mitogenic receptor. This binding was not inhibited either by a monoclonal antibody against the C-terminal sequence of the fibrinogen gamma chains or by synthetic peptides containing the Arg-Gly-Asp sequence. Such inhibition is specific of the platelet fibrinogen receptor, the glycoprotein IIb-IIIa complex. Fragments containing the fibrinogen D domain were the only plasmin degradation products of fibrinogen which were mitogenic. These fragments acted via direct binding on the mitogenic receptor with a Kd of 2.24 X 10(-6) M. This value was similar to the KI value of unlabeled fragments D (2.47 X 10(-6) M). Our results suggest the presence of two different functional types of fibrinogen receptors: the glycoprotein IIb-IIIa receptor responsible both for platelet aggregation and leukocyte adhesion and killing, and the mitogenic receptor involved in proliferation control of hemopoietic cells.  相似文献   

20.
We studied the influence of parathyroid hormone (PTH) on the functional activity of white rat and human platelets, and examined in particular possible mechanisms of PTH influence on the platelet aggregation activity. It has been stated that PTH renders a marked dose-dependent proaggregative effect on platelets. Possible mechanisms of proaggregative effect of parathyroid hormone were examined on platelets using substances with defined mechanisms of the effect. Examination of PTH effect on lectin-intermediated aggregation in a suspension of washed platelets shows that metabolic activation of platelets by PTH causes an increased expression on their plasmic membrane mainly of glycoprotein complex IIb-IIIa and in a lesser degree of glycoprotein complexes Ia-IIa and IV which take part in the formation of interplatelet contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号