首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
On the basis of the circadian oscillations of the rat’s exocrine pancreatic function and previous reports on concomitant ultrastructural changes in the pancreatic tissue, we analysed stereologically the circadian rhythmicity in the structure of this organ. Twenty-four male Wistar rats, four and a half months old, were singly housed two months before the experiment in a lighting regimen LD=12:12, constant environmental temperature and relative humidity, with food and water ad libitum. The experiment was performed in winter. The rats were randomly divided into 6 balanced groups and killed under ether anesthesia at 6 equidistant time points in 24 hours. The pancreatic tissue was fixed in glutaraldehyde and osmium and embedded in Epon. 1 µm thick sections were examined by light microscopy for the evaluation by stereological methods of: a) volume fractions of the different parenchymal components of the exocrine pancreas; b) surface fractions of acinar cell faces; c) size distribution of acinar cell nuclei, their number per unit tissue volume and their mean diameter. Single cosinor method analysis of the data demonstrated statistically significant circadian rhythms for the volume fraction of the cytoplasm of acinar cells and the volume fractions of pancreatic acini and acinar cells. The volume fraction of the cytoplasm of the rat pancreatic acinar cells undergoes circadian oscillations with the highest values at the end of the light span; this rise precedes the well-known physiological nocturnal surge of pancreatic digestive enzymes. Our findings further support the hypothesis of a close relationship between pancreatic cell structure and its function.  相似文献   

3.
On the basis of the circadian oscillations of the rat's exocrine pancreatic function and previous reports on concomitant ultrastructural changes in the pancreatic tissue, we analysed stereologically the circadian rhythmicity in the structure of this organ. Twenty-four male Wistar rats, four and a half months old, were singly housed two months before the experiment in a lighting regimen LD=12:12, constant environmental temperature and relative humidity, with food and water ad libitum. The experiment was performed in winter. The rats were randomly divided into 6 balanced groups and killed under ether anesthesia at 6 equidistant time points in 24 hours. The pancreatic tissue was fixed in glutaraldehyde and osmium and embedded in Epon. 1 µm thick sections were examined by light microscopy for the evaluation by stereological methods of: a) volume fractions of the different parenchymal components of the exocrine pancreas; b) surface fractions of acinar cell faces; c) size distribution of acinar cell nuclei, their number per unit tissue volume and their mean diameter. Single cosinor method analysis of the data demonstrated statistically significant circadian rhythms for the volume fraction of the cytoplasm of acinar cells and the volume fractions of pancreatic acini and acinar cells. The volume fraction of the cytoplasm of the rat pancreatic acinar cells undergoes circadian oscillations with the highest values at the end of the light span; this rise precedes the well-known physiological nocturnal surge of pancreatic digestive enzymes. Our findings further support the hypothesis of a close relationship between pancreatic cell structure and its function.  相似文献   

4.
This protocol permits rapid isolation (in less than 1 hr) of murine pancreatic acini, making it possible to maintain them in culture for more than one week. More than 20 x 106 acinar cells can be obtained from a single murine pancreas. This protocol offers the possibility to independently process as many as 10 pancreases in parallel. Because it preserves acinar architecture, this model is well suited for studying the physiology of the exocrine pancreas in vitro in contrast to cell lines established from pancreatic tumors, which display many genetic alterations resulting in partial or total loss of their acinar differentiation.  相似文献   

5.
Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.  相似文献   

6.
Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis.  相似文献   

7.
One goal of diabetic regenerative medicine is to instructively convert mature pancreatic exocrine cells into insulin-producing cells. We recently reported that ligand-bound thyroid hormone receptor α (TRα) plays a critical role in expansion of the β-cell mass during postnatal development. Here, we used an adenovirus vector that expresses TRα driven by the amylase 2 promoter (AdAmy2TRα) to induce the reprogramming of pancreatic acinar cells into insulin-producing cells. Treatment with l-3,5,3-triiodothyronine increases the association of TRα with the p85α subunit of phosphatidylinositol 3-kinase (PI3K), leading to the phosphorylation and activation of Akt and the expression of Pdx1, Ngn3, and MafA in purified acinar cells. Analyses performed with the lectin-associated cell lineage tracing system and the Cre/loxP-based direct cell lineage tracing system indicate that newly synthesized insulin-producing cells originate from elastase-expressing pancreatic acinar cells. Insulin-containing secretory granules were identified in these cells by electron microscopy. The inhibition of p85α expression by siRNA or the inhibition of PI3K by LY294002 prevents the expression of Pdx1, Ngn3, and MafA and the reprogramming to insulin-producing cells. In immunodeficient mice with streptozotocin-induced hyperglycemia, treatment with AdAmy2TRα leads to the reprogramming of pancreatic acinar cells to insulin-producing cells in vivo. Our findings suggest that ligand-bound TRα plays a critical role in β-cell regeneration during postnatal development via activation of PI3K signaling.  相似文献   

8.
Abstract

Association of 125I-Bolton-Hunter labelled substance P (125I-BH-SP) to suspended pancreatic acinar cells of the guinea pig was studied. Cellular association at 37°C and 22°C was inhibited by cholecystokinin octapeptide (CCK-8) in concentrations from 10?9 to 10?6M, whereas another pancreatic secretagogue, carbachol, was uneffective. The CCK induced inhibition disappeared at low temperatures. CCK-8 mainly interfered with internalization of 125I-BH-SP into acinar cells. Increased extracellular Ca2+ and the Ca2+ ionophores A23187 and ionomycin reduced association of 125I-BH-SP to cells whereas extracellular Ca2+ chelation with EGTA had the opposite effect. However, extra- and intracellular Ca2+ chelation did not affect the degree of CCK-induced reduction of 125I-BH-SP association to acinar cells but eliminated the effect of the calcium ionophore ionomycin. Three agents known to interfere with receptor recycling, namely monensin, methylamine and ammonium chloride reduced cell-associated 125I-BH-SP. In a series of experiments, the cytoplasmic calcium concentrations ([Ca2+) during exposure to these three agents, to the CCK-8-analogue caerulein and to ionomycin were determined. In all cases, [Ca2+] was raised. The results indicate that endocytosis of receptor-bound 125I-BH-SP is regulated by CCK and that the endocytotic process is influenced by calcium.  相似文献   

9.
We explore the dynamic behavior of a model of calcium oscillations and wave propagation in the basal region of pancreatic acinar cells [Sneyd, J., et al., Biophys. J. 85: 1392–1405, 2003]. Since it is known that two principal calcium release pathways are involved, inositol trisphosphate receptors (IPR) and ryanodine receptors (RyR), we study how the model behavior depends on the density of each receptor type. Calcium oscillations can be mediated either by IPR or RyR. Continuous increases in either RyR or IPR density can lead to the appearance and disappearance of oscillations multiple times, and the two receptor types interact via their common effect on cytoplasmic calcium concentration and the subsequent effect on the total amount of calcium inside the cell. Increases in agonist concentration can stimulate oscillations via the RyR by increasing calcium influx. Using a two time-scale approach, we explain these complex behaviors by treating the total amount of cellular calcium as a slow parameter. Oscillations are controlled by the shape of the slow manifold and where it intersects the nullcline of the slow variable. When calcium diffusion is included, the existence of traveling waves in the model equation is strongly dependent on the interplay between the total amount of calcium in the cell and membrane transport, a feature that can be experimentally tested. Our results help us understand the behavior of a model that includes both receptors in comparison to the properties of each receptor type in isolation.  相似文献   

10.
Autophagy can play an important part in protecting host cells during virus infection, and several viruses have developed strategies by which to evade or even exploit this homeostatic pathway. Tissue culture studies have shown that poliovirus, an enterovirus, modulates autophagy. Herein, we report on in vivo studies that evaluate the effects on autophagy of coxsackievirus B3 (CVB3). We show that in pancreatic acinar cells, CVB3 induces the formation of abundant small autophagy-like vesicles and permits amphisome formation. However, the virus markedly, albeit incompletely, limits the fusion of autophagosomes (and/or amphisomes) with lysosomes, and, perhaps as a result, very large autophagy-related structures are formed within infected cells; we term these structures megaphagosomes. Ultrastructural analyses confirmed that double-membraned autophagy-like vesicles were present in infected pancreatic tissue and that the megaphagosomes were related to the autophagy pathway; they also revealed a highly organized lattice, the individual components of which are of a size consistent with CVB RNA polymerase; we suggest that this may represent a coxsackievirus replication complex. Thus, these in vivo studies demonstrate that CVB3 infection dramatically modifies autophagy in infected pancreatic acinar cells.Macroautophagy—henceforth referred to as autophagy—is an intracellular process that is important for cellular differentiation, homeostasis, and survival. Through autophagy, long-lived cytosolic proteins and organelles become encapsulated within double-membraned vesicles, called autophagosomes, which fuse with lysosomes to facilitate degradation of protein and cellular organelles and to promote nutrient recycling/regeneration. Autophagy plays a key role in the host immune response to infection by viruses, bacteria, fungi, and parasites (reviewed in references 10 and 62). Within virus-infected cells, whole virions and/or viral proteins and nucleic acids are captured inside autophagosomes and degraded (following lysosomal fusion) through the process of xenophagy. Moreover, autophagosome fusion with the endosomal/lysosomal pathway facilitates Toll-like receptor recognition of viral materials and delivers endogenous cytosolic viral proteins to the major histocompatibility complex (MHC) class II antigen presentation pathway, which in turn may help to trigger activation of innate immunity (and type I interferon production) and promote antigen presentation to virus-specific CD4+ T cells (reviewed in references 9, 41, 44, 47, 72, and 90). A recent study has shown that autophagy is also involved in the processing and presentation of MHC class I-restricted viral epitopes (13).Given the importance of autophagy in antiviral immunity, it is perhaps not surprising that viruses have evolved mechanisms to evade and/or subvert this pathway (reviewed in references 9, 11, 14, 35, 37, 60, 61, and 77). Several members of the herpesvirus family, most notably herpes simplex virus type 1, inhibit autophagy within an infected cell and encode proteins that block and/or target intracellular signaling pathways that regulate autophagy (reviewed in references 60 and 61). However, some viruses not only evade autophagy but also appear to take advantage of the process; several RNA viruses induce autophagy and exploit the pathway during their replication (1, 12, 15, 31, 40, 43, 76, 93, 96). Viruses belonging to the Picornaviridae family and the Nidovirales order replicate their genomes on double-membraned vesicles that resemble autophagosomes; these vesicles are notably smaller in size than cellular autophagosomes and are decorated with proteins derived from the autophagic pathway (19, 21, 31, 37, 67, 68, 71, 92). Viral proteins encoded by poliovirus and equine arterivirus can trigger the formation of these autophagy-like vesicles (79, 80), and the expression of a single poliovirus protein, 2BC, is sufficient to induce lipidation of the host autophagy protein light chain 3 (LC3), encoded by the Atg8 gene (87). Taken together, these studies suggest that some viruses subvert the autophagy pathway to generate double-membraned vesicles that provide a surface for RNA replication (8, 37, 88). In addition, these vesicles may permit newly formed virions to escape from infected cells via a nonlytic route (36, 85).Although studies have demonstrated that the autophagic pathway may play an important role in virus infection in vitro, either to promote or to restrict viral replication, we are just beginning to appreciate and understand the function and effects of autophagy for virus infections in vivo. Autophagy acts in an antiviral fashion to limit tobacco mosaic virus replication and programmed cell death in plants (46), to prevent a pathogenic infection with vesicular stomatitis virus in flies (73), and to protect against fatal encephalitis in Sindbis virus- or herpes simplex virus type 1-infected mice (45, 59, 63). Nonetheless, to date there is a dearth of in vivo studies; animal models of virus infection are needed in order to better define the antiviral role of autophagy in vivo (41, 62). In addition, studies that address the role of viral subversion of autophagy in vivo are warranted. Does this process occur within infected animals, and is it required for viral replication in particular cell types or for viral pathogenesis? Recent studies have shown that autophagy not only promotes the replication of hepatitis B virus and enterovirus 71 in vitro but also may be induced by infection in vivo, potentially to benefit the virus rather than the host (28, 78).Type B coxsackieviruses (CVBs) are members of the Picornaviridae family and Enterovirus genus and, as such, are closely related to polioviruses. CVBs are important human pathogens that often induce severe acute and chronic diseases and cause morbidity and mortality (69, 91). CVBs are the most common cause of infectious myocarditis (38, 82) and frequently trigger pancreatitis and aseptic meningitis (7, 16, 29, 51). Tissue culture studies (93) have shown that CVB type 3 (CVB3) promotes LC3 conversion and autophagosome accumulation in virus-infected cells in vitro and that modulation of the autophagic pathway (using chemicals or small interfering RNA-mediated knockdown) to enhance or dampen autophagy results in an increase and a decrease, respectively, in viral protein expression and/or viral titers; however, the reported changes in viral titers were modest (2- to 4-fold). In the present study, we examine whether CVB3 activates the autophagic pathway in vivo, specifically in pancreatic acinar cells, which are a natural primary target for this virus. Using a mouse model of CVB3 infection, which faithfully recapitulates most aspects of CVB disease in humans, we demonstrate that this virus triggers LC3 conversion and also modulates other components of the autophagy machinery. In addition, using a recombinant CVB3 (rCVB3) that expresses Discosoma sp. red fluorescent protein (DsRed-CVB3), we identify virus-infected cells in situ and show that CVB3 infection increases autophagosome abundance in vivo. Lysosomal-associated membrane protein 1 (LAMP-1) immunostaining confirmed that amphisomes are generated in virus-infected cells but that autophagic flux was not substantially enhanced as the infection progressed; rather, there appears to be a substantial blockade in fusion with lysosomes. Finally, transmission electron microscopy (TEM) ultrastructural analysis of the infected pancreas confirmed that double-membraned autophagy-like vesicles as well as very large autophagic compartments (for which we have coined the term “megaphagosomes”) were generated in acinar cells following virus infection. Overall, these data provide compelling evidence that CVB3 induces autophagy in vivo and suggest that this picornavirus may subvert this process in a mammalian host.  相似文献   

11.
This paper describes "blebs" protruding from the surface of the nucleus into the cytoplasm. The "blebs" are separated from the cytoplasm by 2 membranes which are continuous with the outer and inner nuclear membranes. The "blebs" contain 3 structurally distinct substances. Two of these substances (β and γ substances) are similar to extranucleolar karyoplasm and nucleolar material. The other substance (α substance) is present in every "bleb," but it cannot be readily compared to a recognizable nuclear structure. Cytoplasmic vesicles are described that are apparently different from the Golgi vesicles or the vesicular component of the ergastoplasm. It is suggested that these vesicles may be of nuclear "bleb" origin. A dark karyoplasmic zone extending from the region of the nucleolus into the nuclear "bleb" is shown. This zone may be similar in some respects to the preformed pathway ("Leitbahn") described by Altmann (3) and Hertl (28) and could reflect movement of nuclear material from the nucleolar region into the cytoplasm. The "blebs" are thought to be homologous to structures described by many light microscopists, but they are considerably larger than the nuclear "blebs" described previously by electron microscopists.  相似文献   

12.
Mature olfactory neurons are continually replaced from a population of progenitor cells. Olfactory nerve section, bulbectomy, or treatment with certain chemicals induces degeneration of olfactory neurons followed in some cases by regeneration. Ornithine decarboxylase (ODC) activity was measured in mouse olfactory tissues as an indicator of cellular regeneration. ODC activity in olfactory tissue (0.2–0.4 nmol/mg protein/h) is 10-30 times higher than in a variety of other cerebral tissues. Within 3 h after unilateral olfactory nerve section, ODC activity in the epithelium declines to 50% of control followed by a slow return to basal activity by 6 days. In the same animals, ODC activity increases severalfold in bulb (1 day) with a gradual decline to normal (9 days). Except for an early transient increase, the effects of unilateral bulbectomy on epithelial ODC activity are similar to those seen after nerve section. The changes in ODC activity following intranasal irrigation with 10 mm -colchicine also closely mimic those seen after nerve section. The effects of intranasal irrigation on ODC activity with 0.5% Triton X-100 or 0.17 m -ZnSO4 are more complex. Thus, when the mature neuronal population is degenerating after surgery or chemical treatments, ODC activity decreases in the epithelium. The subsequent increase of ODC activity prior to reconstitution of the mature neuronal population probably reflects the regeneration mechanism of the olfactory epithelium. The increase of ODC activity in the olfactory bulb after nerve section is best interpreted as a cellular injury response. These alterations in ODC activity in olfactory tissues after chemical and surgical treatments constitute the earliest biochemical events observed in these tissues in response to cellular damage.  相似文献   

13.
Type I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis. Pancreas-specific ablation of interferon (alpha and beta) receptor 1 (Ifnar1) partially protected animals from caerulein-induced pancreatitis, as demonstrated by reduced tissue damage. Profiling of infiltrating immune cells revealed that this dampened tissue damage response correlated with the number of macrophages in the pancreas. Pharmacologic depletion of macrophages reversed the protective effect of Ifnar1 deficiency. Furthermore, expression of chemokine (C-C motif) ligand 2 (Ccl2), a potent factor for macrophage recruitment, was significantly increased in the Ifnar1-deficient pancreas. Thus, type I interferon signaling in pancreatic acinar cells controls pancreatic homeostasis by affecting the macrophage-mediated inflammatory response in the pancreas.  相似文献   

14.
In the present study we have studied how [Ca2+] i is influenced by H2O2 in collagenase-dispersed mouse pancreatic acinar cells and the mechanism underlying this effect by using a digital microspectrofluorimetric system. In the presence of normal extracellular calcium concentration, perfusion of pancreatic acinar cells with 1 mm H2O2 caused a slow sustained [Ca2+] i increase, reaching a stable plateau after 10–15 min of perfusion. This increase induced by H2O2 was also observed in a nominally calcium-free medium, reflecting the release of calcium from intracellular store(s). Application of 1 mm H2O2 to acinar cells, in which nonmitochondrial agonist-releasable calcium pools had been previously depleted by a maximal concentration of CCK-8 (1 nm) or thapsigargin (0.5 μm) was still able to induce calcium release. Similar results were observed when thapsigargin was substituted for the mitochondrial uncoupler FCCP (0.5 μm). By contrast, simultaneous addition of thapsigargin and FCCP clearly abolished the H2O2-induced calcium increase. Interestingly, co-incubation of intact pancreatic acinar cells with CCK-8 plus thapsigargin and FCCP in the presence of H2O2 did not significantly affect the transient calcium spike induced by the depletion of nonmitochondrial and mitochondrial agonist-releasable calcium pools, but was followed by a sustained increase of [Ca2+] i . In addition, H2O2 was able to block calcium efflux evoked by CCK and thapsigargin. Finally, the transient increase in [Ca2+] i induced by H2O2 was abolished by an addition of 2 mm dithiothreitol (DTT), a sulfhydryl reducing agent. Our results show that H2O2 releases calcium from CCK-8- and thapsigargin-sensitive intracellular stores and from mitochondria. The action of H2O2 is likely mediated by oxidation of sulfhydryl groups of calcium-ATPases. Received: 15 May 2000/Revised: 4 October 2000  相似文献   

15.
The small G-protein Rab27A has been shown to regulate the intracellular trafficking of secretory granules in various cell types. However, the presence, subcellular localization and functional impact of Rab27A on digestive enzyme secretion by mouse pancreatic acinar cells are poorly understood. Ashen mice, which lack the expression of Rab27A due to a spontaneous mutation, were used to investigate the function of Rab27A in pancreatic acinar cells. Isolated pancreatic acini were prepared from wild-type or ashen mouse pancreas by collagenase digestion, and CCK- or carbachol-induced amylase secretion was measured. Secretion occurring through the major-regulated secretory pathway, which is characterized by zymogen granules secretion, was visualized by Dextran-Texas Red labeling of exocytotic granules. The minor-regulated secretory pathway, which operates through the endosomal/lysosomal pathway, was characterized by luminal cell surface labeling of lysosomal associated membrane protein 1 (LAMP1). Compared to wild-type, expression of Rab27B was slightly increased in ashen mouse acini, while Rab3D and digestive enzymes (amylase, lipase, chymotrypsin and elastase) were not affected. Localization of Rab27B, Rab3D and amylase by immunofluorescence was similar in both wild-type and ashen acinar cells. The GTP-bound states of Rab27B and Rab3D in wild-type and ashen mouse acini also remained similar in amount. In contrast, acini from ashen mice showed decreased amylase release induced by CCK- or carbachol. Rab27A deficiency reduced the apical cell surface labeling of LAMP1, but did not affect that of Dextran-Texas Red incorporation into the fusion pockets at luminal surface. These results show that Rab27A is present in mouse pancreatic acinar cells and mainly regulates secretion through the minor-regulated pathway.  相似文献   

16.
Abstract: After the goldfish optic nerve was crushed, the total amount of protein in the nerve decreased by about 45% within 1 week as the axons degenerated, began to recover between 2 and 5 weeks as axonal regeneration occurred, and had returned to nearly normal by 12 weeks. Corresponding changes in the relative amounts of some individual proteins were investigated by separating the proteins by two-dimensional gel electrophoresis and performing a quantitative analysis of the Coomassie Brilliant Blue staining patterns of the gels. In addition, labelling patterns showing incorporation of [3H]proline into individual proteins were examined to differentiate between locally synthesized proteins (presumably produced mainly by the glial cells) and axonal proteins carried by fast or slow axonal transport. Some prominent nerve proteins, ON1 and ON2 (50–55 kD, pI ~6), decreased to almost undetectable levels and then reappeared with a time course corresponding to the changes in total protein content of the nerve. Similar changes were seen in a protein we have designated NF (~130 kD, pI ~5.2). These three proteins, which were labelled in association with slow axonal transport, may be neurofilament constituents. Large decreases following optic nerve crush were also seen in the relative amounts of α- and β-tubulin, which suggests that they are localized mainly in the optic axons rather than the glial cells. Another group of proteins, W2, W3, and W4 (35–45 kD, pI 6.5–7.0), which showed a somewhat slower time course of disappearance and were intensely labelled in the local synthesis pattern, may be associated with myelin. A small number of proteins increased in relative amount following nerve crush. These included some, P1 and P2 (35–40 kD, pIs 6.1–6.2) and NT (~50 kD, pI ~5.5), that appeared to be synthesized by the glial cells. Increases were also seen in one axonal protein, B (~45 kD, pI ~4.5), that is carried by fast axonal transport, as well as in two axonal proteins, HA1 and HA2 (~60 and 65 kD respectively, pIs 4.5–5.0), that are carried mainly by slow axonal transport. Other proteins, including actin, that showed no net changes in relative amount (but presumably changed in absolute amount in direct proportion to the changes in total protein content of the nerve), are apparently distributed in both the neuronal and nonneuronal compartments of the nerve.  相似文献   

17.
The small GTPase Rab27B localizes to the zymogen granule membranes and plays an important role in regulating protein secretion by pancreatic acinar cells, as does Rab3D. A common guanine nucleotide exchange factor (GEF) for Rab3 and Rab27 has been reported; however, the GTPase-activating protein (GAP) specific for Rab27B has not been identified. In this study, the expression in mouse pancreatic acini of two candidate Tre-2/Bub2/Cdc16 (TBC) domain-containing proteins, EPI64 (TBC1D10A) and EPI64B (TBC1D10B), was first demonstrated. Their GAP activity on digestive enzyme secretion was examined by adenovirus-mediated overexpression of EPI64 and EPI64B in isolated pancreatic acini. EPI64B almost completely abolished the GTP-bound form of Rab27B, without affecting GTP-Rab3D. Overexpression of EPI64B also enhanced amylase release. This enhanced release was independent of Rab27A, but dependent on Rab27B, as shown using acini from genetically modified mice. EPI64 had a mild effect on both GTP-Rab27B and amylase release. Co-overexpression of EPI64B with Rab27B can reverse the inhibitory effect of Rab27B on amylase release. Mutations that block the GAP activity decreased the inhibitory effect of EPI64B on the GTP-bound state of Rab27B and abolished the enhancing effect of EPI64B on the amylase release. These data suggest that EPI64B can serve as a potential physiological GAP for Rab27B and thereby participate in the regulation of exocytosis in pancreatic acinar cells.  相似文献   

18.
19.
The pancreatic acinar cell is the main parenchymal cell of the exocrine pancreas and plays a primary role in the secretion of pancreatic enzymes into the pancreatic duct. It is also the site for the initiation of pancreatitis. Here we describe how acinar cells are isolated from whole pancreas tissue and intracellular calcium signals are measured. In addition, we describe the techniques of transfecting these cells with adenoviral constructs, and subsequently measuring the leakage of lactate dehydrogenase, a marker of cell injury, during conditions that induce acinar cell injury in vitro. These techniques provide a powerful tool to characterize acinar cell physiology and pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号