首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small Intestinal Glucose Transport : Proximal-Distal kinetic gradients   总被引:2,自引:0,他引:2  
Proximal and distal small intestinal segments of the rat were perfused in situ at two different rates with isotonic solutions containing glucose in concentrations ranging from 25 to 600 mg/100 ml. Absorption was measured as glucose disappearance rate from the lumen. Glucose absorption had not previously been studied at intraluminal concentrations above and below blood glucose. Absorption was more rapid from the proximal segment. In both segments absorption was independent of perfusion rate and of whether glucose was analyzed by counting 14C or by the Somogyi method. The latter finding suggests that of the unidirectional fluxes, flux out of the bowel is much greater than flux into the bowel. In contrast to the findings in previous studies neither segment showed rate-limiting kinetics, and the Michaelis-Menten analysis was not applicable. The form of the curve depicting absorption rate in relation to concentration differed between the two segments. At the higher concentrations absorption rate continued to increase much more rapidly in the proximal than in the distal segment. The observations could not be explained by known mechanisms of glucose transport and illustrate the difficulties of achieving biochemically and physiologically meaningful in vivo studies of intestinal absorption.  相似文献   

2.
Crohn’s disease is a severe, incurable inflammatory bowel disease. Orally administered emu oil has demonstrated anti-inflammatory properties in previous models of gastrointestinal disease. We aimed to determine whether orally administered emu oil could attenuate disease in a mouse model of Crohn’s-like colitis. Female ARC(s) mice (CD-1 equivalent, n = 10/group) were intra-rectally administered water (120 μL) or trinitrobenzene sulfonic acid (TNBS; 3 mg in 50% ethanol; 120 μL bolus) on day 0. Mice were orally administered water (80 μL) or emu oil (80 μL or 160 μL) daily for five days and euthanized on day six. Bodyweight and disease activity were recorded daily. Colonoscopy, burrowing activity, facial grimace, histological parameters (damage severity, small intestinal villus height/crypt depth and colonic crypt depth), myeloperoxidase activity and intestinal permeability were assessed. P < 0.05 was considered statistically significant. TNBS decreased bodyweight (days 1, 2, 4; P < 0.05) and increased disease activity (days 1–6; P < 0.01), compared to normal controls. Emu oil (80 μL) attenuated disease activity on days 5–6 (P < 0.05), although bodyweight loss was not significantly impacted (P > 0.05). Facial grimace and colonoscopy scores were significantly increased in TNBS-control mice; effects attenuated by both volumes of emu oil (P < 0.001). TNBS increased histological damage severity compared to normal controls (P < 0.05); an effect attenuated by 80 μL emu oil (proximal and distal colon; P < 0.05) and 160 μL emu oil (distal colon; P < 0.01). In the ileum, villus height and crypt depth were unaffected by TNBS or emu oil treatment compared to normal (P > 0.05). TNBS-induced distal colonic crypt lengthening was unaffected following emu oil administration (P > 0.05). Remaining parameters, including burrowing, myeloperoxidase activity and intestinal permeability, were unchanged across all treatment groups (P > 0.05). In normal mice, emu oil treatment did not significantly impact any parameter compared to normal controls. In conclusion, emu oil reduced overall disease severity and facial grimace scores in TNBS mice. These results suggest therapeutic potential for orally administered emu oil in the management of Crohn’s disease.  相似文献   

3.
The intraperitoneal administration of large doses of quinacrine in rats results in a state of enteromegaly affecting mainly the distal small bowel, caecum and proximal colon. This enteromegaly is associated with mucosal crypt hyperplasia, and hypertrophy and hyperplasia of the Muscularis propria. In order to investigate the changes in the intestinal mucosal crypts, morphometry and a metaphase-arrest experiment with vincristine were undertaken on a group of rats given 12 mg of quinacrine hydrochloride by intraperitoneal injection daily for 5 days 2 weeks previously, and comparisons drawn with a group of control animals. In the quinacrine-treated animals there was marked enteromegaly affecting the distal small bowel, caecum and proximal colon, and in these segments there was clear crypt hyperplasia. Proximal and distal to the dilated bowel hyperplasia was not seen. No consistent pattern of change in crypt-cell birth rate was evident. the mechanisms by which quinacrine may effect kinetic and morphometric changes in the intestinal crypts are considered.  相似文献   

4.
Studies were designed to determine if permeability of adapted (remnant) small bowel mucosa to polyethylene glycol (PEG) was altered after major intestinal resection. Rats underwent 50% small bowel resection with preservation of duodenum and terminal ileum. Sham-operated animals served as controls. Two and four weeks later we cannulated the portal vein and measured mucosal permeability to luminal [3H]PEG and [14C]PEG in isotonic Ringer solution in remnant proximal or distal in situ closed intestinal loops. A lumen-to-portal blood gradient of at least 1000/1 persisted throughout the one-hour experimental period in both resected and sham-operated animals. Thus the adapted remnant intestinal mucosa was highly impermeable to luminal radiotracer PEG. In separate experiments 2 and 4 weeks after 70% small bowel resection or sham operation, in vivo segments of proximal and distal small intestinal were perfused through the lumen for one hour with hypertonic (800 mOsm) mannitol or NaCl solution containing [3H]PEG. There was equal and almost total recovery of [3H]PEG at the end of the experimental period in resected and control animals. The combined data of all experiments indicate that radiotracer PEG may be confidently used as a luminal water phase marker in transport studies of remnant bowel following intestinal resection.  相似文献   

5.
ADP-ribose 1″,2″-cyclic phosphate (Appr>p) is produced in yeast and other eukaryotes as a consequence of tRNA splicing. This molecule is converted to ADP-ribose 1″-phosphate (Appr-1″p) by the action of the cyclic nucleotide phosphodiesterase (CPDase). Comparison of the previously cloned CPDase from Arabidopsis with proteins having related cyclic phosphodiesterase or RNA ligase activities revealed two histidine-containing tetrapeptides conserved in these enzyme families. Using the consensus phosphodiesterase signature, we have identified the yeast Saccharomyces cerevisiae open reading frame YGR247w as encoding CPDase. The bacterially expressed yeast protein, named Cpd1p, is able to hydrolyze Appr>p to Appr-1″p. Moreover, as with the previously characterized Arabidopsis and wheat CPDases, Cpd1p hydrolyzes nucleosides 2′,3′-cyclic phosphates (N>p) to nucleosides 2′-phosphates. Apparent Km values for Appr>p, A>p, U>p, C>p and G>p are 0.37, 4.97, 8.91, 12.18 and 14.29 mM, respectively. Site-directed mutagenesis of individual amino acids within the two conserved tetrapeptides showed that H40 and H150 residues are essential for CPDase activity. Deletion analysis has indicated that the CPD1 gene is not important for cellular viability. Likewise, overexpression of Cpd1p had no effect on yeast growth. These results do not implicate an important role for Appr>p or Appr-1″p in yeast cells grown under standard laboratory conditions.  相似文献   

6.
TCAP encoded telethonin is a 19 kDa protein, which plays an important role in anchoring titin in Z disc of the sarcomere, and is known to cause LGMD2G, a rare muscle disorder characterised by proximal and distal lower limb weakness, calf hypertrophy and loss of ambulation. A total of 300 individuals with ARLGMD were recruited for this study. Among these we identified 8 clinically well characterised LGMD2G cases from 7 unrelated Dravidian families. Clinical examination revealed predominantly proximo - distal form of weakness, scapular winging, muscle atrophy, calf hypertrophy and foot drop, immunoblot showed either complete absence or severe reduction of telethonin. Genetic analysis revealed a novel nonsense homozygous mutation c.32C>A, p.(Ser11*) in three patients of a consanguineous family and an 8 bp homozygous duplication c.26_33dupAGGTGTCG, p.(Arg12fs31*) in another patient. Both mutations possibly lead to truncated protein or nonsense mediated decay. We could not find any functionally significant TCAP mutation in the remaining 6 samples, except for two other polymorphisms, c.453A>C, p.( = ) and c.-178G>T, which were found in cases and controls. This is the first report from India to demonstrate TCAP association with LGMD2G.  相似文献   

7.
This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively.  相似文献   

8.
We demonstrate a new, efficient and easy-to-use method for enzymatic synthesis of (stereo-)specific and segmental 13C/15N/2H isotope-labeled single-stranded DNA in amounts sufficient for NMR, based on the highly efficient self-primed PCR. To achieve this, new approaches are introduced and combined. (i) Asymmetric endonuclease double digestion of tandem-repeated PCR product. (ii) T4 DNA ligase mediated ligation of two ssDNA segments. (iii) In vitro dNTP synthesis, consisting of in vitro rNTP synthesis followed by enzymatic stereo-selective reduction of the C2′ of the rNTP, and a one-pot add-up synthesis of dTTP from dUTP. The method is demonstrated on two ssDNAs: (i) a 36-nt three-way junction, selectively 13C9/15N3/2H(1′,2″,3′,4′,5′,5″)-dC labeled and (ii) a 39-nt triple-repeat three-way junction, selectively 13C9/15N3/2H(1′,2″,3′,4′,5′,5″)-dC and 13C9/15N2/2H(1′,2″,3′,4′,5′,5″)-dT labeled in segment C20-C39. Their NMR spectra show the spectral simplification, while the stereo-selective 2H-labeling in the deoxyribose of the dC-residues, straightforwardly provided assignment of their C1′–H2′ and C2′–H2′ resonances. The labeling protocols can be extended to larger ssDNA molecules and to more than two segments.  相似文献   

9.
Intestinal motility disorders are an important problem in the postoperative management of patients with intestinal atresia. Intestinal motility could be initiated by luminal factors that activate intrinsic and extrinsic primary afferent nerves involved in the peristaltic reflex. Endocrine cells act as a key point, because they transfer information regarding the intestinal contents and intraluminal pressure to nerve fibers lying in close proximity to the basolateral surface of the epithelium. In chick embryo, experimental intestinal atresia is associated with disorders in the development of the enteric nervous system, related to the severity of intestinal dilation. Our aim was to investigate the distribution pattern of endocrine cells in the developing endocrine system of chick embryo small intestine with experimentally-induced atresia on day 12 and on day 16. Changes in enteroendocrine population were examined in gut specimens (excised proximal and distal to the atresia) from experimental embryos 19 days old and in control sham-operated chick embryos at the same age. Sections from proximal and distal bowel and control bowel were stained with Grimelius silver stain, a valuable histochemical method for detecting the argyrophil and argentophilic cells, and with an immunohistochemical procedure for detecting serotonin and neurotensin immunoreactive cells. In chick embryo proximal bowel, intestinal dilation differed in the various embryos. We found significantly higher enteroendocrine cell counts in proximal bowel than in distal and control bowel. The differences depended on the precociousness of surgery and the severity of dilation. Considering the major contribution of enteroendocrine cells to the peristaltic reflex, our data may help to explain the pathogenesis of motility disorders related to intestinal atresia.  相似文献   

10.
One molecule of ADP-ribose 1″,2″-cyclic phosphate (Appr>p) is formed during each of the approximately 500000 tRNA splicing events per Saccharomyces cerevisiae generation. The metabolism of Appr>p remains poorly defined. A cyclic phosphodiesterase (Cpd1p) has been shown to convert Appr>p to ADP-ribose-1″-phosphate (Appr1p). We used a biochemical genomics approach to identify two yeast phosphatases that can convert Appr1p to ADP-ribose: the product of ORF YBR022w (now Poa1p), which is completely unrelated to other known phosphatases; and Hal2p, a known 3′-phosphatase of 5′,3′-pAp. Poa1p is highly specific for Appr1p, and thus likely acts on this molecule in vivo. Poa1 has a relatively low KM for Appr1p (2.8 μM) and a modest kcat (1.7 min−1), but no detectable activity on several other substrates. Furthermore, Poa1p is strongly inhibited by ADP-ribose (KI, 17 μM), modestly inhibited by other nucleotides containing an ADP-ribose moiety and not inhibited at all by other tested molecules. In contrast, Hal2p is much more active on pAp than on Appr1p, and several other tested molecules were Hal2p substrates or inhibitors. poa1-Δ mutants have no obvious growth defect at different temperatures in rich media, and analysis of yeast extracts suggests that ~90% of Appr1p processing activity originates from Poa1p.  相似文献   

11.
Isotonic reabsorption by the rat kidney proximal tubule was drastically inhibited after less than 2 min intraluminal perfusion with fresh sera from rat (both homologous and autologous), cat, rabbit and human, but not with sera from mouse and guinea pig. The inhibitory factor in serum in a heat (56° C for 30 min) and storage (4°C for 2–5 days) labile macromolecule (mol. wt 50 000) and requires Ca2+ for its effect. The cellular electrical potential difference of the proximal tubular cells was irreversively destroyed and intraluminally perfused trypan blue dye incorporated into the tubular cells after the intraluminal perfusion with serum for 2 min. These observations suggest that lysis of the proximal tubular cells is the mechanism for serum-induced inhibition of proximal tubular isotonic reabsorption.  相似文献   

12.
Rhubarb is often used to establish chronic diarrhea and spleen (Pi)-deficiency syndrome animal models in China. In this study, we utilized the enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) method to detect changes in bacterial diversity in feces and the bowel mucosa associated with this model. Total microbial genomic DNA from the small bowel (duodenum, jejunum, and ileum), large bowel (proximal colon, distal colon, and rectum), cecum, and feces of normal and rhubarb-exposed rats were used as templates for the ERIC-PCR analysis. We found that the fecal microbial composition did not correspond to the bowel bacteria mix. More bacterial diversity was observed in the ileum of rhubarb-exposed rats (P<0.05). Furthermore, a 380 bp product was found to be increased in rhubarb-exposed rats both in faces and the bowel mucosa. The product was cloned and sequenced and showed high similarity with regions of the Bacteroides genome. AS a result of discriminant analysis with the SPSS software, the Canonical Discriminant Function Formulae for model rats was established.  相似文献   

13.
The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.  相似文献   

14.
1. The effect of perfusion on the activities of hexokinase and lactate dehydrogenase was studied in the proximal half of the small intestine of fed and starved rats. 2. Perfusion of preparations from starved rats with a medium containing glucose caused a significant increase in hexokinase activity of the particle-free supernatant. The increase in activity was observed as early as 5min after the start of perfusion and persisted for up to 66min of perfusion. No increase in hexokinase activity of the particle-free supernatant was observed when a medium containing mannitol was used. As a further control, preparations from fed rats were perfused under the same conditions. With the medium containing glucose, the hexokinase activity of the particle-free supernatant remained unchanged during the first 15min of perfusion and thereafter fell gradually until, after 66min of perfusion, 73% of the original activity was retained. 3. The activity of lactate dehydrogenase in the particle-free supernatant prepared from the proximal half of the untreated small intestine of starved rats was significantly lower than in corresponding preparations from fed animals. However, it did not change significantly on perfusion with media containing either mannitol or glucose. 4. The distribution of hexokinase activity between total particulate fraction and particle-free supernatant was measured in preparations from starved rats after perfusion for 5–10min. In preparations that had not been perfused the ratio of hexokinase activity in total particulate fraction/particle-free supernatant was significantly higher in starved than in fed animals. After perfusion with a medium containing glucose, the total homogenate activity had not changed significantly, whereas the ratio of hexokinase activity in total particulate fraction/particle-free supernatant decreased significantly and approached the value obtained with fed animals. 5. The results agree with the view that the glucose-dependent increase of hexokinase activity in the soluble cell compartment as observed in vivo and in vitro in the intestinal mucosa of starved rats is brought about by a release of hexokinase activity from a particulate subcellular structure(s).  相似文献   

15.
Acute alveolar hypoxia causes pulmonary vasoconstriction (HPV) - also known as von Euler-Liljestrand mechanism - which serves to match lung perfusion to ventilation. Up to now, the underlying mechanisms are not fully understood. The major vascular segment contributing to HPV is the intra-acinar artery. This vessel section is responsible for the blood supply of an individual acinus, which is defined as the portion of lung distal to a terminal bronchiole. Intra-acinar arteries are mostly located in that part of the lung that cannot be selectively reached by a number of commonly used techniques such as measurement of the pulmonary artery pressure in isolated perfused lungs or force recordings from dissected proximal pulmonary artery segments1,2. The analysis of subpleural vessels by real-time confocal laser scanning luminescence microscopy is limited to vessels with up to 50 µm in diameter3.We provide a technique to study HPV of murine intra-pulmonary arteries in the range of 20-100 µm inner diameters. It is based on the videomorphometric analysis of cross-sectioned arteries in precision cut lung slices (PCLS). This method allows the quantitative measurement of vasoreactivity of small intra-acinar arteries with inner diameter between 20-40 µm which are located at gussets of alveolar septa next to alveolar ducts and of larger pre-acinar arteries with inner diameters between 40-100 µm which run adjacent to bronchi and bronchioles. In contrast to real-time imaging of subpleural vessels in anesthetized and ventilated mice, videomorphometric analysis of PCLS occurs under conditions free of shear stress. In our experimental model both arterial segments exhibit a monophasic HPV when exposed to medium gassed with 1% O2 and the response fades after 30-40 min at hypoxia.  相似文献   

16.
Intestinal epithelial cells (IECs) have critical roles in maintaining homeostasis of intestinal epithelium. Endoplasmic reticulum (ER) stress is implicated in intestinal epithelium homeostasis and inflammatory bowel disease; however, it remains elusive whether IRE1α, a major sensor of ER stress, is directly involved in these processes. We demonstrate here that genetic ablation of Ire1α in IECs leads to spontaneous colitis in mice. Deletion of IRE1α in IECs results in loss of goblet cells and failure of intestinal epithelial barrier function. IRE1α deficiency induces cell apoptosis through induction of CHOP, the pro-apoptotic protein, and sensitizes cells to lipopolysaccharide, an endotoxin from bacteria. IRE1α deficiency confers upon mice higher susceptibility to chemical-induced colitis. These results suggest that IRE1α functions to maintain the intestinal epithelial homeostasis and plays an important role in defending against inflammation bowel diseases.  相似文献   

17.
Lgr4/Gpr48 is one of the newly identified R-spondins receptors and potentiates Wnt signaling, which regulates intestinal homeostasis. We used a hypomorphic mouse strain to determine the role of Lgr4 in intestinal inflammation and recovery. Intestinal inflammation was induced with dextran sulfate sodium (DSS) followed by a recovery period. Intestinal inflammation symptoms and molecular mechanisms were examined. We found that Lgr4−/− mice exhibited dramatically higher susceptibility to and mortality from DSS-induced inflammatory bowel disease than WT mice. Lgr4 deficiency resulted in greatly reduced numbers of either Paneth cells or stem cells in the intestine. During the intestinal regeneration process, cell proliferation but not apoptosis of intestinal epithelial cells was significantly impaired in Lgr4−/− mice. When Wnt/β-catenin signaling was reactivated by crossing with APCmin/+ mice or by treating with a GSK-3β inhibitor, the number of Paneth cells was partially restored and the mortality caused by DSS-induced inflammatory bowel disease was strikingly reduced in Lgr4-deficient animals. Thus, Lgr4 is critically involved in the maintenance of intestinal homeostasis and protection against inflammatory bowel disease through modulation of the Wnt/β-catenin signaling pathway.  相似文献   

18.
Slowing of intestinal transit by fat is abolished by immunoneutralization of peptide YY (PYY), demonstrating a key role for this gut peptide. How PYY slows intestinal transit is not known. We tested the hypothesis that the slowing of intestinal transit by PYY may depend on an ondansetron-sensitive serotonergic pathway and a naloxone-sensitive opioid pathway. In a fistulated dog model, occluding Foley catheters were used to compartmentalize the small intestine into proximal (between fistulas) and distal (beyond midgut fistula) half of gut. Buffer (pH 7.0) was perfused into both proximal and distal gut, and PYY was delivered intravenously. Ondansetron or naloxone was mixed with buffer and delivered into either the proximal or distal half of gut. Intestinal transit was measured across the proximal half of the gut. The slowing of intestinal transit by PYY was abolished when either ondansetron or naloxone was delivered into the proximal, but not the distal gut, to localize the two pathways to the efferent limb of the slowing response. In addition, 5-HT slows intestinal transit with marker recovery decreased from 76.2 +/- 3.6% (control) to 33.5 +/- 2.4% (5-HT) (P < 0.0001) but was reversed by naloxone delivered into the proximal gut with marker recovery increased to 79.9 +/- 7.2% (P < 0.0005). We conclude that the slowing of intestinal transit by PYY depends on serotonergic neurotransmission via an opioid pathway.  相似文献   

19.
The U1A/U2B″/SNF family of small nuclear ribonucleoproteins uses a phylogenetically conserved RNA recognition motif (RRM1) to bind RNA stemloops in U1 and/or U2 small nuclear RNA (snRNA). RRMs are characterized by their α/β sandwich topology, and these RRMs use their β-sheet as the RNA binding surface. Unique to this RRM family is the tyrosine-glutamine-phenylalanine (YQF) triad of solvent-exposed residues that are displayed on the β-sheet surface; the aromatic residues form a platform for RNA nucleobases to stack. U1A, U2B″, and SNF have very different patterns of RNA binding affinity and specificity, however, so here we ask how YQF in Drosophila SNF RRM1 contributes to RNA binding, as well as to domain stability and dynamics. Thermodynamic double-mutant cycles using tyrosine and phenylalanine substitutions probe the communication between those two residues in the free and bound states of the RRM. NMR experiments follow corresponding changes in the glutamine side-chain amide in both U1A and SNF, providing a physical picture of the RRM1 β-sheet surface. NMR relaxation and dispersion experiments compare fast (picosecond to nanosecond) and intermediate (microsecond-to-millisecond) dynamics of U1A and SNF RRM1. We conclude that there is a network of amino acid interactions involving Tyr-Gln-Phe in both SNF and U1A RRM1, but whereas mutations of the Tyr-Gln-Phe triad result in small local responses in U1A, they produce extensive microsecond-to-millisecond global motions throughout SNF that alter the conformational states of the RRM.  相似文献   

20.
Ras association domain family protein 1A (RASSF1A) is a tumor suppressor gene silenced in cancer. Here we report that RASSF1A is a novel regulator of intestinal inflammation as Rassf1a+/−, Rassf1a−/− and an intestinal epithelial cell specific knockout mouse (Rassf1a IEC-KO) rapidly became sick following dextran sulphate sodium (DSS) administration, a chemical inducer of colitis. Rassf1a knockout mice displayed clinical symptoms of inflammatory bowel disease including: increased intestinal permeability, enhanced cytokine/chemokine production, elevated nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) activity, elevated colonic cell death and epithelial cell injury. Furthermore, epithelial restitution/repair was inhibited in DSS-treated Rassf1a−/− mice with reduction of several makers of proliferation including Yes associated protein (YAP)-driven proliferation. Surprisingly, tyrosine phosphorylation of YAP was detected which coincided with increased nuclear p73 association, Bax-driven epithelial cell death and p53 accumulation resulting in enhanced apoptosis and poor survival of DSS-treated Rassf1a knockout mice. We can inhibit these events and promote the survival of DSS-treated Rassf1a knockout mice with intraperitoneal injection of the c-Abl and c-Abl related protein tyrosine kinase inhibitor, imatinib/gleevec. However, p53 accumulation was not inhibited by imatinib/gleevec in the Rassf1a−/− background which revealed the importance of p53-dependent cell death during intestinal inflammation. These observations suggest that tyrosine phosphorylation of YAP (to drive p73 association and up-regulation of pro-apoptotic genes such as Bax) and accumulation of p53 are consequences of inflammation-induced injury in DSS-treated Rassf1a−/− mice. Mechanistically, we can detect robust associations of RASSF1A with membrane proximal Toll-like receptor (TLR) components to suggest that RASSF1A may function to interfere and restrict TLR-driven activation of NFκB. Failure to restrict NFκB resulted in the inflammation-induced DNA damage driven tyrosine phosphorylation of YAP, subsequent p53 accumulation and loss of intestinal epithelial homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号