首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In V79 Chinese hamster cells, radiation-induced genomic instability results in a persistently increased frequency of micronuclei, dicentric chromosomes and apoptosis and in decreased colony-forming ability. These manifestations of radiation-induced genomic instability may be attributed to an increased rate of chromosome breakage events many generations after irradiation. This chromosomal instability does not seem to be a property which has been inflicted on individual chromosomes at the time of irradiation. Rather, it appears to be secondary to an increased level of non-specific clastogenic factors in the progeny of most if not all irradiated cells. This conclusion is drawn from the observations presented here, that all the chromosomes in surviving V79 cells are involved in the formation of dicentric chromosome aberrations 1 or 2 weeks after irradiation with about equal probability if corrections are made for chromosome length. Received: 5 March 1998 / Accepted in revised form: 1 July 1998  相似文献   

2.
The genetic effects of the mitotic inhibitor methyl benzimidazole-2-yl-carbamate (MBC) have been studied in Saccharomyces cerevisiae. MBC had little or no effect on the frequency of mutation. In some experiments MBC caused an increase in the frequency of mitotic recombination; however, this effect was small and not reproducible. The primary genetic effect of MBC was to induce mitotic chromosome loss at a high frequency. Chromosome loss occurred at equal frequencies for all chromosomes tested (13 of 16). Cells which had lost multiple chromosomes were found more frequently than predicted if individual chromosome loss events were independent. The probability of loss for a particular chromosome increased with length of time cells were incubated with MBC. MBC treatment also increased the frequency at which polyploid cells were found. These results suggested that MBC acted to disrupt the structure or function of the mitotic spindle and cause chromosome nondisjunction.  相似文献   

3.
A protein chromosome scaffold structure has been proposed that acts as a structural framework for attachment of chromosomal DNA. There are several troubling aspects of this concept: (1) such structures have not been seen in many previous thin-section and whole-mount electron microscopy studies of metaphase chromosomes, while they are readily seen in leptotene and zygotene chromosomes; (2) such a structure poses problems for sister chromatid exchanges; and (3) the published photographs show a marked variation in the amount of scaffold in different whole-mount preparations. An alternative explanation is that the scaffold in whole-mount preparations represents incomplete dispersion of the high concentration of chromatin in the center of chromosomes, and when the histones are removed and the DNA dispersed, the remaining nonhistone proteins (NHPs) aggregate to form a chromosome-shaped structure. Two studies were done to determine if the scaffold is real or an artifact: (1) Chinese hamster mitotic cells and isolated chromosomes were examined using two protein stains -EDTA-regressive staining and phosphotungstic acid (PTA) stain. The EDTA-regressive stain showed ribonucleoprotein particles at the periphery of the chromosomes but nothing at the center of the chromosomes. The PTA stain showed the kinetochore plates but no central structures; and (2) isolated chromosomes were partially dispersed to decrease the high concentration of chromatin in the center of the chromosome, then treated with 4 M ammonium acetate or 2 M NaCl to dehistonize them and disperse the DNA. Under these circumstances, no chromosome scaffold was seen. We conclude that the scaffold structure is an artifact resulting from incomplete dispersion of central chromatin and aggregation of NHPs in dehistonized chromosomes.  相似文献   

4.
Summary The chromosome complements of eighty brain cells ofHylemya antiqua have been studied. The eighty cells were found in thirty-three larvae. Total complement length (TCL) is not randomly distributed among the larvae. Because there is an inverse correlation between chromosome length and width, it appears that in the cells studied the different chromosome lengths are partly expressions of different stages of metaphase contraction. It is suggested that synchronous division of cells still occurs in late larvae.The length of each chromosome arm is highly correlated with that of every other arm. It is possible that the correlations are complete but that inadequate technique causes the departures from completeness which are observed. The chromosome lengths are corrected slightly for distortions, but the corrections make very little difference in the correlation coefficients. There is a high value for the correlation between the correlation of two arm lengths and the sum of the two arm lengths. This is to be expected if the perfect correlation between all arm lengths is being obscured by errors of drawing and measurement.The autosomal arms have very similar coefficients of variation. The arm ratios (length of long arm divided by short arm) are not correlated with TCL or with each other, and arm ratio is randomly distributed among the larvae. The sex chromosomes have a smaller coefficient of variation than the autosomes, so that they are relatively large in small cells and relatively small in large cells.Twenty-two cells inHylemya fugax were measured. The autosomes also showed a high correlation between arm lengths. An entirely heterochromatic autosomal arm showed the same phenomenon of a low coefficient of variation which was shown by the heteropycnotic sex chromosomes inH. antiqua. The low variability of heterochromatic regions accompanied by an apparently non-random distribution of the TCL may produce an erroneous picture of the species complement when dealing with small numbers.It is suggested that for simplicity in using cytological observations of this sort for taxonomic purposes, the technique of measuring the percent TCL of a chromosome plus its arm ratio be replaced by the percent TCL of each arm plus the average length difference between the arms of each chromosome pair in units of percent TCL.  相似文献   

5.
Mammalian cells can choose either nonhomologous end joining (NHEJ) or homologous recombination (HR) for repair of chromosome breaks. Of these two pathways, HR alone requires extensive DNA synthesis and thus abundant synthesis precursors (dNTPs). We address here if this differing requirement for dNTPs helps determine how cells choose a repair pathway. Cellular dNTP pools are regulated primarily by changes in ribonucleotide reductase activity. We show that an inhibitor of ribonucleotide reductase (hydroxyurea) hypersensitizes NHEJ-deficient cells, but not wild type or HR-deficient cells, to chromosome breaks introduced by ionizing radiation. Hydroxyurea additionally reduces the frequency of irradiated cells with a marker for an early step in HR, Rad51 foci, consistent with reduced initiation of HR under these conditions. Conversely, promotion of ribonucleotide reductase activity protects NHEJ-deficient cells from ionizing radiation. Importantly, promotion of ribonucleotide reductase activity also increases usage of HR in cells proficient in both NHEJ and HR at a targeted chromosome break. Activity of ribonucleotide reductase is thus an important factor in determining how mammalian cells repair broken chromosomes. This may explain in part why G1/G0 cells, which have reduced ribonucleotide reductase activity, rely more on NHEJ for DSB repair.  相似文献   

6.
The human sperm/hamster egg fusion technique has been used to analyse 6,821 human sperm chromosome complements from 98 men to determine if all chromosomes are equally likely to be involved in aneuploid events or if some chromosomes are particularly susceptible to nondisjunction. The frequency of hypohaploidy and hyperhaploidy was compared among different chromosome groups and individual chromosomes. In general, hypohaploid sperm complements were more frequent than hyperhaploid complements. The distribution of chromosome loss in the hypohaploid complements indicated that significantly fewer of the large chromosomes and significantly more of the small chromosomes were lost, suggesting that technical loss predominantly affects small chromosomes. Among the autosomes, the observed frequency of hyperhaploid sperm equalled the expected frequency (assuming an equal frequency of nondisjunction for all chromosomes) for all chromosome groups. Among individual autosomes, only chromosome 9 showed an increased frequency of hyperhaploidy. The sex chromosomes also showed a significant increase in the frequency of hyperhaploidy. These results are consistent with studies of spontaneous abortions and liveborns demonstrating that aneuploidy for the sex chromosomes is caused by paternal meiotic error more commonly than aneuploidy for the autosomes.  相似文献   

7.
Keith L. Moore  Jean C. Hay 《CMAJ》1963,88(21):1071-1079
This presentation is designed to show the diagnostic implications of chromosomal abnormalities, and how in some cases chromosome analysis may be helpful in prognosis and counselling. Most males with Klinefelter''s syndrome have chromatinpositive nuclei and an abnormal sex chromosome complex (usually XXY). In Turner''s syndrome many such females have chromatin-negative nuclei and a deficient sex chromosome complex (usually XO). Multiple-X females have unusual chromatin patterns (two or three masses of sex chromatin) and abnormal sex chromosome complexes (XXX, XXXX, XO/XXX, etc.). One of the parents of a translocation mongol may carry a translocation chromosome and pass it to future children. Cytogenetic data are therefore essential for genetic counselling. Mosaic and deletion mongols may show incomplete manifestations of mongolism, which make diagnosis difficult; chromosome analysis is helpful in diagnosis, and in prognosis concerning mental development. Abnormal chromosome numbers result from non-disjunction, usually during gametogenesis. The error may occur, however, during cleavage, producing cells with different chromosome complements (mosaicism). Visible structural abnormalities of chromosomes result from deletions or translocations of chromosome fragments.  相似文献   

8.
Meiosis is the cell division that halves the genetic component of diploid cells to form gametes or spores. To achieve this, meiotic cells undergo a radical spatial reorganisation of chromosomes. This reorganisation is a prerequisite for the pairing of parental homologous chromosomes and the reductional division, which halves the number of chromosomes in daughter cells. Of particular note is the change from a centromere clustered layout (Rabl configuration) to a telomere clustered conformation (bouquet stage). The contribution of the bouquet structure to homologous chromosome pairing is uncertain. We have developed a new in silico model to represent the chromosomes of Saccharomyces cerevisiae in space, based on a worm-like chain model constrained by attachment to the nuclear envelope and clustering forces. We have asked how these constraints could influence chromosome layout, with particular regard to the juxtaposition of homologous chromosomes and potential nonallelic, ectopic, interactions. The data support the view that the bouquet may be sufficient to bring short chromosomes together, but the contribution to long chromosomes is less. We also find that persistence length is critical to how much influence the bouquet structure could have, both on pairing of homologues and avoiding contacts with heterologues. This work represents an important development in computer modeling of chromosomes, and suggests new explanations for why elucidating the functional significance of the bouquet by genetics has been so difficult.  相似文献   

9.
In order to construct a human chromosome 4-specific YAC library, we have utilized pYAC4 and a mouse/human hybrid cell line HA(4)A in which the only human chromosome present is chromosome 4. From this cell line, approximately 8Mb of chromosome 4 have been cloned. The library includes 65 human-specific clones that range in size from 30kb to 290kb, the average size being 108kb. In order to optimize the manipulation of YAC libraries, we have begun to investigate the stability of YACs containing human DNA in yeast cells; these studies will also determine if there are intrinsic differences in the properties of chromosomes containing higher eukaryotic DNAs. We are examining two kinds of stability: 1] mitotic stability, the ability of the YAC to replicate and segregate properly during mitosis, and 2] structural stability, the tendency of the YAC to rearrange. We have found that the majority of YACs examined are one to two orders of magnitude less stable than authentic yeast chromosomes. Interestingly, the largest YAC analyzed displayed a loss rate typical for natural yeast chromosomes. Our results also suggest that increasing the length of an artificial chromosome improves its mitotic stability. One YAC that showed a very high frequency of rearrangement by mitotic recombination proved to be a mouse/human chimera. In contrast to studies using total human DNA, the frequency of chimeras (i.e., mouse/human) in the YAC pool appeared to be low.  相似文献   

10.
When cells of the dinoflagellates Prorocentrum micans and Gyrodinium cohnii are exposed to the proteolytic enzyme pronase or alternatively to ribonuclease, the structure of chromosomes is markedly altered. These changes have been observed electron microscopically in thin sections and spreads. Treatment of cells with pronase removed the bulk of nonfibrillar chromosome material completely unmasking fine chromosomal DNA fibres. Pronase had similar effect also on the dense material which is in contact with chromosomes; fibrillar loops protruding from chromosomes were exposed. However, pronase had no effect on the structural integrity of chromosomes. On the contrary, treatment of cells with ribonuclease loosened the package of chromosomal fibres. Thin sections showed that the tight package of longitudinal periodic structures seen in untreated chromosome was relaxed; chromosome extended longitudinally and formed a linear array of balls. When ribonuclease-treated chromosomes were spread, they were substantially more stretched than untreated chromosomes because of uncoiling of two oppositehanded spiral chromatid bundles. The effect of ribonuclease treatment suggests that unknown RNA species have an important role in the maintenance of permanent condensation of dinoflagellate chromosomes. On the other hand, proteins removable by pronase are also present. Most probably they are not linked to the chromosome structure but represent the matrix of nuclear activity.  相似文献   

11.
Summary Individual S phase allocyclic chromosomes have been analyzed in Bloom syndrome lymphocytes, in cells with an r(9), and in hypotetraploid Ehrlich mouse ascites cells treated with 1-methyl-2-benzyl hydrazine. On the basis of the following observations, we conclude that such chromosomes more or less reflect their domains in interphase: (1) The S phase allocyclic chromosomes have the same structure as S phase prematurely condensed chromatin (PCC) in fused cells; in other words they form limited areas of chromatin dots; (2) the allocyclic chromosome is the only chromosome in a metaphase plate which synthesizes DNA simultanneously with interphase nuclei; (3) the size of the allocyclic chromosomes is related to the size of the corresponding metaphase chromosome; and (4) the S phase allocyclic chromosomes resemble closely the chromosome domains in interphase made visible with biotinylated human DNA. A variety of evidence shows that most allocyclic chromosomes are simply left behind in their cycle, which presumably is caused by a deletion or inactivation of a hypothetical coiling center situated on each chromosome arm.  相似文献   

12.
V. Guacci  D. B. Kaback 《Genetics》1991,127(3):475-488
Distributive disjunction is defined as the first division meiotic segregation of either nonhomologous chromosomes that lack homologs or homologous chromosomes that have not recombined. To determine if chromosomes from the yeast Saccharomyces cerevisiae were capable of distributive disjunction, we constructed a strain that was monosomic for both chromosome I and chromosome III and analyzed the meiotic segregation of the two monosomic chromosomes. In addition, we bisected chromosome I into two functional chromosome fragments, constructed strains that were monosomic for both chromosome fragments and examined meiotic segregation of the chromosome fragments in the monosomic strains. The two nonhomologous chromosomes or chromosome fragments appeared to segregate from each other in approximately 90% of the asci analyzed, indicating that yeast chromosomes were capable of distributive disjunction. We also examined the ability of a small nonhomologous centromere containing plasmid to participate in distributive disjunction with the two nonhomologous monosomic chromosomes. The plasmid appeared to efficiently participate with the two full length chromosomes suggesting that distributive disjunction in yeast is not dependent on chromosome size. Thus, distributive disjunction in S. cerevisiae appears to be different from Drosophila melanogaster where a different sized chromosome is excluded from distributive disjunction when two similar size nonhomologous chromosomes are present.  相似文献   

13.
To allow chromosome segregation, topoisomerase II (topo II) must resolve sister chromatid intertwines (SCI) formed during deoxynucleic acid (DNA) replication. How this process extends to the full genome is not well understood. In budding yeast, the unique structure of the ribosomal DNA (rDNA) array is thought to cause late SCI resolution of this genomic region during anaphase. In this paper, we show that chromosome length, and not the presence of rDNA repeats, is the critical feature determining the time of topo II–dependent segregation. Segregation of chromosomes lacking rDNA also requires the function of topo II in anaphase, and increasing chromosome length aggravates missegregation in topo II mutant cells. Furthermore, anaphase Stu2-dependent microtubule dynamics are critical for separation of long chromosomes. Finally, defects caused by topo II or Stu2 impairment depend on attachment of telomeres to the nuclear envelope. We propose that topological constraints imposed by chromosome length and perinuclear attachment determine the amount of SCI that topo II and dynamic microtubules resolve during anaphase.  相似文献   

14.
A bioriented chromosome is tethered to opposite spindle poles during congression by bundles of kinetochore microtubules (kMts). At room temperature, kinetochore fibers are a dominant component of mitotic spindles of PtK2 cells. PtK2 cells at room temperature were injected with purified tubulin covalently bound to DTAF and congression movements of individual chromosomes were recorded in time lapse. Congression movements of bioriented chromosomes between the poles occur over distances of 4.5 microns or greater. DTAF-tubulin injection had no effect on either the velocity or extent of these movements. Other cells were lysed, fixed, and the location of DTAF-tubulin incorporation was detected from digitally processed images of indirect immunofluorescence of an antibody to DTAF. Microtubules were labeled with an anti-beta tubulin antibody. At 2-5 minutes after injection, concentrated DTAF-tubulin staining was seen in the kinetochore fibers proximal to the kinetochores; a low concentration of DTAF-tubulin staining occurred at various sites through the remaining length of the fibers toward the pole. Kinetochore fibers in the same cell displayed different lengths (0.2 to 4 microns) of concentrated DTAF-tubulin incorporation proximal to the kinetochore, as did sister kinetochore fibers. Ten minutes after injection, the lengths of DTAF-containing chromosomal fibers were greater than expected if incorporation resulted solely from the lengthening of kinetochore microtubules due to congression movements of the chromosomes. Besides incorporation as a result of chromosome movement, two other mechanisms might explain the length of the DTAF-containing segments: 1) a poleward flux of tubulin subunits (Mitchison, 1989) or 2) capture of DTAF-containing nonkinetochore microtubules.  相似文献   

15.
Summary The question of chromosome distribution in the mammalian nucleus is addressed, and data are provided in support of the ordered arrangement of chromosomes in the Chinese hamster spermatocyte. Testicular cells were dispersed and air-dried without prior fixation, then stained and karyotyped. The position of chromosome telomeres in 217 pachytene spermatocytes was determined in relation to four concentric rings which equally divided the nuclear area. The distribution of telomeres showed a progressive decline from the central to the peripheral rings. This was particularly pronounced for chromosomes 1–7, but was reversed for the XY chromosomes. The distribution of the total as well as of the individual chromosomes was significantly different from that expected on the basis of random distribution. The only exceptions to this were chromosomes 8–10, which exhibited random distribution. Thus, while chromosomes 1–7 had a central position, the XY pair had a peripheral localization. The mean ring position appeared to be related to chromosome length, except for the XY chromosomes, suggesting that chromosome length may determine chromosome position.  相似文献   

16.
G. R. Geard 《Chromosoma》1976,55(3):209-228
The proposition that subunits of a chromatid are continuous in a directional sense has been tested by observing the behaviour of induced ring chromosomes in Vicia faba. On the simplest hypothesis, that the subunits are the uninterrupted complementary strands of the DNA molecule, the polarity of rejoining should result in free separation of rings following replication in successive cell cycles. Centric and acentric ring chromosomes were separately assessed in both diploid and colchicine-accumulated tetraploid metaphase cells of primary root tips. Contrary to expectation large numbers of single and interlocked rings were observed in both cell cycles. Spontaneous sister chromatid exchanges and other breakage-reunion events can produce the configurations seen; with the postulated level of sister chromatid exchange equating that determined autoradiographically in rod chromosomes of V. faba. Unless the replication of ring chromosomes produces conditions unusual in rod chromosome replication, spontaneous breakage is probably common in replicating or post replication Vicia chromosomes. — A fundamental difference exists between the behaviour of centric and acentric ring chromosomes. Acentric ring chromosomes behave as if the chromatid arm were one DNA molecule, or a number of DNA molecules with identical directional sense. However, centric ring chromosomes behave as if there were a difference at the centromere in at least one (probably the metacentric) chromosome of the Vicia complement. That is, the two duplication-segregation subunits which extend the length of the chromosome, may contain a change in polarity at the centromere.  相似文献   

17.
A new procedure for determining the chromosomal origin of marker chromosomes has been carried out. The origin of marker chromosomes that were unidentifiable by standard banding techniques could be verified by reverse chromosome painting. This technique includes microdissection, followed by in vitro DNA amplification and fluorescence in situ hybridization (FISH). A number of marker chromosomes prepared from unbanded and from GTG-banded lymphocyte chromosomes were collected with microneedles and transferred to a collection drop. The chromosomal material was amplified by a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The resulting PCR products were labelled by nick-translation with biotin-11-dUTP and used as probes for FISH. They were hybridized onto normal metaphase spreads in order to determine the precise regional chromosomal origin of the markers. Following this approach, we tested 2–14 marker chromosomes in order to determine how many are necessary for reverse chromosome painting. As few as two marker chromosomes provided sufficient material to paint the appropriate chromosome of origin, regardless of whether the marker contained heterochromatic or mainly euchromatic material. With this method, it was possible to identify two marker chromosomes of a healthy proband [karyotype: 48,XY, +mar1,+mar2] and an aberrant Y chromosome of a mentally retarded boy [karyotype: 46,X, der(Y)].  相似文献   

18.
Trisomies 18 and 21 are genetic disorders in which cells possess an extra copy of each of the relevant chromosomes. Individuals with these disorders who survive birth generally have a shortened life expectancy. As telomeres are known to play an important role in the maintenance of genomic integrity by protecting the chromosomal ends, we conducted a study to determine whether there are differences in telomere length at birth between individuals with trisomy and diploidy, and between trisomic chromosomes and normal chromosomes. We examined samples of peripheral blood lymphocytes (PBLs) from 31 live neonates (diploidy: 10, trisomy 18: 10, trisomy 21: 11) and estimated the telomere length of each chromosome arm using Q-FISH. We observed that the telomeres of trisomic chromosomes were neither shorter nor longer than the mean telomere length of chromosomes as a whole among subjects with trisomies 18 and 21 (intra-cell comparison), and we were unable to conclude that there were differences in telomere length between 18 trisomy and diploid subjects, or between 21 trisomy and diploid subjects (inter-individual comparison). Although it has been reported that telomeres are shorter in older individuals with trisomy 21 and show accelerated telomere shortening with age, our data suggest that patients with trisomies 18 and 21 may have comparably sized telomeres. Therefore, it would be advisable for them to avoid lifestyle habits and characteristics such as obesity, cigarette smoking, chronic stress, and alcohol intake, which lead to marked telomere shortening.  相似文献   

19.
In contrast to those of metaphase chromosomes, the shape, length, and architecture of human interphase chromosomes are not well understood. This is mainly due to technical problems in the visualization of interphase chromosomes in total and of their substructures. We analyzed the structure of chromosomes in interphase nuclei through use of high-resolution multicolor banding (MCB), which paints the total shape of chromosomes and creates a DNA-mediated, chromosome-region-specific, pseudocolored banding pattern at high resolution. A microdissection-derived human chromosome 5-specific MCB probe mixture was hybridized to human lymphocyte interphase nuclei harvested for routine chromosome analysis, as well as to interphase nuclei from HeLa cells arrested at different phases of the cell cycle. The length of the axis of interphase chromosome 5 was determined, and the shape and MCB pattern were compared with those of metaphase chromosomes. We show that, in lymphocytes, the length of the axis of interphase chromosome 5 is comparable to that of a metaphase chromosome at 600-band resolution. Consequently, the concept of chromosome condensation during mitosis has to be reassessed. In addition, chromosome 5 in interphase is not as straight as metaphase chromosomes, being bent and/or folded. The shape and banding pattern of interphase chromosome 5 of lymphocytes and HeLa cells are similar to those of the corresponding metaphase chromosomes at all stages of the cell cycle. The MCB pattern also allows the detection and characterization of chromosome aberrations. This may be of fundamental importance in establishing chromosome analyses in nondividing cells.  相似文献   

20.
Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other''s homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4''s high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号