首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we have developed a fuzzy expert system (FES) for different sounds produced by different organs in the human body. We have also constructed a unique electronic stethoscope. The human body sounds produced by different organs like heart, lungs and intestine were analyzed. The doctor provided the data and relation between variables chosen for each organ sound. Using this information a rule base for fuzzy expert system was built. Such FES helps the medical doctor in arriving at appropriate decision in different difficult clinical situations. The examination of body sounds was done using conventional stethoscope (CS) and electronic stethoscope (ES), which was uniquely designed for this study. We have found that unique stethoscope developed by us is far superior to conventional stethoscope by its overall performance.  相似文献   

2.
Excessive pressure on the stethoscope head in auscultatory blood pressure measurement does not affect systolic blood pressure value but it does erroneously lower diastolic readings and frequently causes the sounds to persist to zero. Consequently, the lightest possible pressure should be placed on the stethoscope head.  相似文献   

3.
ABSTRACT: BACKGROUND: Acute respiratory infections are the leading cause of childhood mortality. The lack of physicians in rural areas of developing countries makes difficult their correct diagnosis and treatment. The staff of rural health facilities (health-care technicians) may not be qualified to distinguish respiratory diseases by auscultation. For this reason, the goal of this project is the development of a tele-stethoscopy system that allows a physician to receive real-time cardio-respiratory sounds from a remote auscultation, as well as video images showing where the technician is placing the stethoscope on the patient's body. METHODS: A real-time wireless stethoscopy system was designed. The initial requirements were: 1) The system must send audio and video synchronously over IP networks, not requiring an Internet connection; 2) It must preserve the quality of cardiorespiratory sounds, allowing to adapt the binaural pieces and the chestpiece of standard stethoscopes, and; 3) Cardiorespiratory sounds should be recordable at both sides of the communication. In order to verify the diagnostic capacity of the system, a clinical validation with eight specialists has been designed. In a preliminary test, twelve patients have been auscultated by all the physicians using the tele-stethoscopy system, versus a local auscultation using traditional stethoscope. The system must allow listen the cardiac (systolic and diastolic murmurs, gallop sound, arrhythmias) and respiratory (rhonchi, rales and crepitations, wheeze, diminished and bronchial breath sounds, pleural friction rub) sounds. RESULTS: The design, development and initial validation of the real-time wireless tele-stethoscopy system are described in detail. The system was conceived from scratch as open-source, low-cost and designed in such a way that many universities and small local companies in developing countries may manufacture it. Only free open-source software has been used in order to minimize manufacturing costs and look for alliances to support its improvement and adaptation. The microcontroller firmware code, the computer software code and the PCB schematics are available for free download in a subversion repository hosted in SourceForge. CONCLUSIONS: It has been shown that real-time tele-stethoscopy, together with a videoconference system that allows a remote specialist to oversee the auscultation, may be a very helpful tool in rural areas of developing countries.  相似文献   

4.
Low frequency audible vibrations are produced by human skeletal muscles undergoing sustained contraction. The effect is easily demonstrable with an electronic stethoscope which amplifies sound below 50 Hz. Autocorrelation analysis of the signal shows that it is periodic with a frequency 25 +/- 2.5 Hz. The quality of the sound is the same for all the skeletal muscles tested and is unaffected by changes in tension, ambient temperature, and blood flow. Electrically-stimulated contraction produces a sound which is indistinguishable from voluntary contraction. The amplitude of the sound increases linearly with tension. The sound signals are uncorrelated both in frequency and phase with electromyographic signals obtained simultaneously while the muscle is contacted. Arguments are presented to show that the sounds may be an intrinsic property of muscle contraction.  相似文献   

5.
A relatively simple procedure was devised to obtain blood pressures in rhesus monkeys. This procedure utilized a polygraph, pulse transducer, pressure transducer, blood pressure mixer unit, and pediatric sphygmomanometer cuff. Previous attempts to auscultate the Korotkoff sounds by use of a sphygmomanometer cuff and stethoscope were unsuccessful. Blood pressure can be obtained by cannulation of the femoral artery, but repeated puncture may cause serious trauma to the arterial wall. This procedure was developed and used in our laboratory to obtain repeated blood pressures over a 90-da period. Results from using the cuff and polygraph have been shown to correlate favorably with cannulation of the femoral artery.  相似文献   

6.
The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability.  相似文献   

7.
J. Job Faber  Alan C. Burton 《CMAJ》1964,91(3):120-128
Much research has been carried out recently into the means by which heart sounds and murmurs reach the stethoscope from their point of origin. Heart sounds originate as vibrations of the cardiac valves and travel as transverse vibrations with low velocity over the walls of the ventricles and great vessels. Where these structures are in contact with the thoracic surface they emerge, at the `auscultatory areas'', and spread like ripples over the chest surface. Murmurs originate in the cavities receiving the blood stream, and are loudest in the cavity that is less distensible. Frequency, damping in transit and the possible misinterpretation of apparent `splitting'' seen in phonocardiographic records are discussed. This basic knowledge of modes of transmission allows the interpretation of unusual locations of auscultatory areas in disease states, and explains some puzzling findings obtained with microphones mounted on cardiac catheters.  相似文献   

8.
What did Morganucodon hear?   总被引:1,自引:0,他引:1  
The structure of the middle and inner ear of Morganucodon , one of the oldest known mammals, is reviewed and compared to the structure of the ears of extant mammals, reptiles and birds with known auditory capabilities. Specifically, allometric relationships between ear dimensions (basilar-membrane length, tympanic-membrane area and stapes-footplate area) and specific features of the audiogram are defined in extant ears. These relationships are then used to make several predictions of auditory function in Morganucodon. The results point out that the ear structures of Morganucodon–Art similar in dimensions to ear structures in both extant small mammals–with predominantly high-frequency (10 kHz) auditory capabilities, and reptiles and birds- with better low and middle-frequency hearing (< 5 kHz). Although the allometric analysis cannot by itself determine whether Morganucodon heard more like present-day small mammals, or birds and reptiles, the apparent stiffness of the Morganucodon middle ear is both more consistent with the high-frequency mammalian middle ear and would act to decrease the sensitivity of a bird-reptile middle ear to low-frequency sound. Several likely hearing scenarios for Morganucodon are defined, including a scenario in which these animals had ears like those of modern small mammals that are selectively sensitive to high-frequency sounds, and a second scenario in which the Morganucodon ear was moderately sensitive to sounds of a narrow middle-frequency range (5–7 kHz) and relatively insensitive to sounds of higher or lower frequency. The evidence needed to substantiate either scenario includes some objective measure of the stiffness of the Morganucodon ossicular system, while a key datum needed to distinguish between the two hypotheses includes confirmation of the presence or absence of a cochlear lamina in the Morganucodon inner ear.  相似文献   

9.
Summary To study the diets of individual animals in the context of intraspecific resource partitioning, it is desirable to detect what individuals are eating without disturbing them. Animals such as slow-moving molluscs on two-dimensional algal foods would be convenient to study, but the mouth is usually difficult to see, especially with limpets. However, one can often hear how an herbivorous mollusc is feeding. Even when the mouth region can be checked for feeding movement, feeding noises can indicate to what degree a mollusc is licking microscopic material off the surface of a plant versus biting into the plant, though licking microscopic material off the plants seems to be rare. Noises also indicate the food's texture, identifying the food species when several different algae are near the mollusc's mouth. Comparing various molluscan taxa, differences in radular structure and movement are associated with different feeding noises, even while different molluscs are eating the same alga. Sound thus aids in specifying which species are feeding where molluscs are close together.Feeding is most common on wet surfaces at night. While the molluscs are above water or less than 5 cm deep in calm water, several listening methods are useful after some practice. Even the unaided ear can hear emerged molluscs rasping resonant kelps. One can detect rasping by molluscs greater than 1 cm in length by gently contacting the alga closest to the mouth with a stethoscope or with a gum rubber tube sealed against one's ear. A cassette tape recorder with a contact microphone and headphones is useful for both emerged and submerged animals. Representative feeding noises have been documented using oscillograms from tape recordings. Analogous sounds in both terrestrial and marine environments can be useful in numerous behavioral studies.  相似文献   

10.
It has been postulated that the excellent sense of hearing in moose is mostly due to: (1) the large surface of the external ear, (2) better stereophony due to the large distance between ears, (3) independently movable, extremely adjustable pinna, and (4) the amplification of sounds reflected by the palms of the antlers. The last factor, possible reflection of sounds into pinna by the palm of the antlers, was tested in this study on a large antler trophy of Alaskan moose. The reception of a standard tone, broadcast from the frontally placed speaker, was recorded by a sound level meter located in an artificial moose ear. Three locations of the ear, as positioned relative to the speaker, e.g., frontward, sideward, and backward, were tested. The weakest reception was recorded in the backward position of the ear. If the sound pressure measured in the frontward position was set as 100%, the sound pressure in the backward position was 79%. The strongest reception was recorded when the artificial ear was positioned toward the center of the antler palm. In this position, the sound pressure was 119% relative to the frontward position. These findings strongly indicate that the palm of moose antlers may serve as an effective, parabolic reflector which increases the acoustic pressure of the incoming sound.  相似文献   

11.
A sequence of sounds may be heard as coming from a single source (called fusion or coherence) or from two or more sources (called fission or stream segregation). Each perceived source is called a 'stream'. When the differences between successive sounds are very large, fission nearly always occurs, whereas when the differences are very small, fusion nearly always occurs. When the differences are intermediate in size, the percept often 'flips' between one stream and multiple streams, a property called 'bistability'. The flips do not generally occur regularly in time. The tendency to hear two streams builds up over time, but can be partially or completely reset by a sudden change in the properties of the sequence or by switches in attention. Stream formation depends partly on the extent to which successive sounds excite different 'channels' in the peripheral auditory system. However, other factors can play a strong role; multiple streams may be heard when successive sounds are presented to the same ear and have essentially identical excitation patterns in the cochlea. Differences between successive sounds in temporal envelope, fundamental frequency, phase spectrum and lateralization can all induce a percept of multiple streams. Regularities in the temporal pattern of elements within a stream can help in stabilizing that stream.  相似文献   

12.
Pulsations of the internal carotid and stapedial arteries produce unwanted sounds (noise) in the middle ear cavity which influence hearing in some mammals. 'Noise' pressure levels calculated from pulse rates, volume pulsations of the arteries, and Fourier analysis of arterial waveforms, correlate well with low frequency thresholds of hearing in the Long-eared hedgehog, Tree shrew and Kangaroo rat. In mammals adapted to hear low frequency sounds, such as the Kangaroo rat and fossorial insectivores, the arteries are enclosed in noise attenuating bony tubes. However, most small mammals possess extended high frequency hearing with little sensitivity at the low frequencies of the arterial sounds. In lower tetrapods such as anurans and most lizards, the broad connection between the middle ear cavity and the pharynx creates a leakage pathway which greatly reduces the noise from the stapedial artery. It is probably for these reasons that the large intratympanic arteries did not disturb hearing in early mammals or submammalian forms.  相似文献   

13.
Over the years, many attempts have been made to develop special stethoscopes for the teaching of auscultation. The objective of this article is to report on the experience with the development and implementation of an electronic stethoscope and a virtual library of cardiac sounds. There were four stages to this project: (1) the building of the prototype to acquire, filter and amplify the cardiac sounds, (2) the development of a software program to record, reproduce and visualize them, (3) the testing of the prototype in a clinical scenario, and (4) the development of an internet site, to store and display the sounds collected. The first two stages are now complete. The prototype underwent an initial evaluation in a clinical scenario within the Unit and during virtual out-patient clinical sessions. One hundred auscultations were recorded during these tests. They were reviewed and discussed on-line by a panel of experience cardiologists during the sessions. Although the sounds were considered "satisfactory" for diagnostic purposes by the cardiology team, they identified some qualitative differences in the electronic recorded auscultations, such as a higher pitch of the recorded sounds. Prospective clinical studies are now being conducted to further evaluate the interference of the electronic device in the physicians' capability to diagnose different cardiac conditions. An internet site (www.caduceusvirtual.com.br/ auscultaped) was developed to host these cardiac auscultations. It is set as a library of cardiac sounds, catalogued by pathologies and already contains examples from auscultations of the majority of common congenital heart lesions, such as septal defects and valvar lesions.  相似文献   

14.
The problems associated with the detection of sounds and other mechanical disturbances in the aquatic environment differ greatly from those associated with airborne sounds. The differences are primarily due to the incompressibility of water and the corresponding increase in importance of the acoustic near field. The near field, or hydrodynamic field, is characterized by steep spatial gradients in pressure, and detection of the accelerations associated with these gradients is performed by both the inner ear and the lateral line systems of fishes. Acceleration-sensitive otolithic organs are present in all fishes and provide these animals with a form of inertial audition. The detection of pressure gradients, by both the lateral line and inner ear, is the taxonomically most widespread mechanism of sound-source detection amongst vertebrates, and is thus the most likely primitive mode of detecting sound sources. Surprisingly, little is known about the capabilities of either the lateral line or the otolithic endorgan in the detection of vibratory dipole sources. Theoretical considerations for the overlapping roles of the inner ear and lateral line systems in midwater predict that the lateral line will operate over a shorter distance range than the inner ear, although with a much greater spatial resolution. Our empirical results of dipole detection by mottled sculpin, a benthic fish, do not agree with theoretical predictions based on midwater fishes, in that the distance ranges of the two systems appear to be approximately equal. This is almost certainly as a result of physical coupling between the fishes and the substrate. Thus, rather than having a greater active range, the inner ear appears to have a reduced distance range in benthic fishes, and the lateral line distance range may be concomitantly extended.  相似文献   

15.
Thyroid hormones are essential to maintain normal function of many systems including the cardiovascular system. Their excess or deficiency may upset human body homeostasis. Hyperthyroidism leads to cardiovascular system's hyperdynamic status which is characterized by tachycardia, increased difference between systolic and diastolic arterial pressure, significant increase of the stroke volume and improvement of the left ventricular diastolic function. Long-lasting thyrotoxicosis in patient with heart disease may result in atrial fibrillation, deterioration of angina pectoris or congestive heart failure. Hypothyroidism leads to hemodynamic disturbances which are quite different than those observed in hyperthyroidism, but cardiac symptoms are scant in clinical practice. Hypothyroidism's clinical significance is limited to atherosclerosis progression and intensification of ischaemic heart disease symptoms. Both leads to symptomatic cardiovascular system failure or its deterioration. We should emphasize that cardiovascular system dysfunction associated with thyrometabolic disturbances subsides when euthyreosis is restored. It sounds promising that there are reports suggesting a potential advantage of thyroxin treatment in patients with acute or chronic cardiovascular system diseases. These hypotheses result from the observations that heart dysfunction in hypothyroidism is similar to that observed in heart failure.  相似文献   

16.
LeMasurier M  Gillespie PG 《Neuron》2005,48(3):403-415
In the inner ear, sensory hair cells not only detect but also amplify the softest sounds, allowing us to hear over an extraordinarily wide intensity range. This amplification is frequency specific, giving rise to exquisite frequency discrimination. Hair cells detect sounds with their mechanotransduction apparatus, which is only now being dissected molecularly. Signal detection is not the only role of this molecular network; amplification of low-amplitude signals by hair bundles seems to be universal in hair cells. "Fast adaptation," the rapid closure of transduction channels following a mechanical stimulus, appears to be intimately involved in bundle-based amplification.  相似文献   

17.
Schaette R  Turtle C  Munro KJ 《PloS one》2012,7(6):e35238
Tinnitus, a phantom auditory sensation, is associated with hearing loss in most cases, but it is unclear if hearing loss causes tinnitus. Phantom auditory sensations can be induced in normal hearing listeners when they experience severe auditory deprivation such as confinement in an anechoic chamber, which can be regarded as somewhat analogous to a profound bilateral hearing loss. As this condition is relatively uncommon among tinnitus patients, induction of phantom sounds by a lesser degree of auditory deprivation could advance our understanding of the mechanisms of tinnitus. In this study, we therefore investigated the reporting of phantom sounds after continuous use of an earplug. 18 healthy volunteers with normal hearing wore a silicone earplug continuously in one ear for 7 days. The attenuation provided by the earplugs simulated a mild high-frequency hearing loss, mean attenuation increased from <10 dB at 0.25 kHz to >30 dB at 3 and 4 kHz. 14 out of 18 participants reported phantom sounds during earplug use. 11 participants presented with stable phantom sounds on day 7 and underwent tinnitus spectrum characterization with the earplug still in place. The spectra showed that the phantom sounds were perceived predominantly as high-pitched, corresponding to the frequency range most affected by the earplug. In all cases, the auditory phantom disappeared when the earplug was removed, indicating a causal relation between auditory deprivation and phantom sounds. This relation matches the predictions of our computational model of tinnitus development, which proposes a possible mechanism by which a stabilization of neuronal activity through homeostatic plasticity in the central auditory system could lead to the development of a neuronal correlate of tinnitus when auditory nerve activity is reduced due to the earplug.  相似文献   

18.
Using an electronic stethoscope placed on subjects' abdomens, bowel sound biofeedback was administered to five subjects suffering from irritable bowel syndrome (functional diarrhea). They were instructed to alternately increase and decrease colonic sounds in an attempt to gain control over bowel activity. Using daily ratings of diarrhea as the primary dependent measure, three of five subjects reduced mean ratings enough at posttreatment to meet our 50% criterion for success (100%, 94%, and 54%). At 1-year follow-up, two of the three short-term successes had maintained their level of improvement — each had ratings 75% below those of pretreatment.  相似文献   

19.
Livshits MS 《Biofizika》2000,45(5):922-926
The study is based on the model of sound perception that involves two systems of measuring the frequency of the sound being perceived. The system of analyzing the periodicity of spike sequence in axons of neurons innervating the internal auditory hair cells excited by the running wave is less precise, but it provides the estimation of the frequency of any periodical sounds. Exact measurement of the frequency of the sinusoidal sound occurs from the spikes in axons of neurones innervating the internal hair cells of the auditory reception field, which uses the entire train of waves excited by this sound in the critical layer of the waveguide of the internal ear cochlea, which corresponds to the frequency of the sound. The octave effect is explained in terms of the fact that the spectrum of frequencies of speech sounds, singing and music coincides with the region of the audibility range in which the impulses of the auditory nerve fibers are synchronized by incoming signals. The octave similarity, i.e., the similarity in the sounding of harmonic signals, whose frequencies relate as even numbers (2:1, etc.), is explained by an unambiguous match between the sound frequency and pulse rate in auditory fibers coming from the auditory reception field. The presence in the brain posterior tubercles of multipeak neurons whose peaks are in octave ratio, confirm the crucial role of the system of exact measurement of frequency in the phenomenon of octave similarity. The phenomenon of diplacusis, which is particularly pronounced in persons with Menier disease, is caused by changes in the position of the auditory reception field in the diseased ear as compared with the healthy ear. The alternating switching of reception from one ear to the other is related to a disturbance of the unitary image of pitch.  相似文献   

20.
Tympanal ears of female gypsy moths Lymantria dispar dispar (L.) (Lepidoptera: Erebidae: Lymantriinae) are reportedly more sensitive than ears of conspecific males to sounds below 20 kHz. The hypothesis is tested that this differential sensitivity is a result of sex‐specific functional roles of sound during sexual communication, with males sending and females receiving acoustic signals. Analyses of sounds produced by flying males reveal a 33‐Hz wing beat frequency and 14‐kHz associated clicks, which remain unchanged in the presence of female sex pheromone. Females exposed to playback sounds of flying conspecific males respond with wing raising, fluttering and walking, generating distinctive visual signals that may be utilized by mate‐seeking males at close range. By contrast, females exposed to playback sounds of flying heterospecific males (Lymantria fumida Butler) do not exhibit the above behavioural responses. Laser Doppler vibrometry reveals that female tympana are particularly sensitive to frequencies in the range produced by flying conspecific males, including the 33‐Hz wing beat frequency, as well as the 7‐kHz fundamental frequency and 14‐kHz dominant frequency of associated clicks. These results support the hypothesis that the female L. dispar ear is tuned to sounds of flying conspecific males. Based on previous findings and the data of the present study, sexual communication in L. dispar appears to proceed as: (i) females emitting sex pheromone that attracts males; (ii) males flying toward calling females; and (iii) sound signals from flying males at close range inducing movement in females, which, in turn, provides visual signals that could orient males toward females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号