首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We previously showed that the 93-bp region between the enhancer and promoter (named DEN for downstream of enhancer) of the long terminal repeat (LTR) of the MCF13 murine leukemia virus is an important determinant of the ability of this virus to induce thymic lymphoma. In this study we observed that DEN plays a role in the regulation of virus replication in the thymus during the preleukemic period. A NF-kappaB site in the DEN region partially contributes to the effect of DEN on both lymphomagenicity and virus replication. To further study the effects of DEN and the NF-kappaB site on viral pathogenicity during the preleukemic period, we examined replication of wild-type and mutant viruses with a deletion of the NF-kappaB site or the entire DEN region in the thymus. Thymic lymphocytes which were infected with wild-type and mutant viruses were predominantly the CD3(-) CD4(+) CD8(+) and CD3(+) CD4(+) CD8(+) cells. The increase in infection by wild-type virus and both mutant viruses of these two subpopulations during the preleukemic period ranged from 9- to 84-fold, depending upon the time point and virus. The major difference between the wild-type and both mutant viruses was the lower rate and lower level of mutant virus replication in these thymic subpopulations. Significant differences in replication between wild-type and both mutant viruses were seen in the CD3(-) CD4(+) CD8(+) and CD3(-) CD4(-) CD8(-) subpopulations, suggesting that these thymic cell types are important targets for viral transformation.  相似文献   

2.
B Belli  A Patel    H Fan 《Journal of virology》1995,69(2):1037-1043
We recently showed that different routes of inoculation affect the leukemogenicity of the Mo+PyF101 variant of Moloney murine leukemia virus (M-MuLV). Intraperitoneal (i.p.) inoculation of neonatal mice with Mo+PyF101 M-MuLV greatly enhanced its leukemogenicity compared with subcutaneous (s.c.) inoculation. We previously also suggested that the leukemogenicity defect of Mo+PyF101 M-MuLV when inoculated s.c. may result from the inability of this virus to form env gene recombinant (mink cell focus-inducing [MCF]) virus. In this study, virus present in end-stage tumors and in preleukemic animals inoculated i.p. by Mo+PyF101 M-MuLV was characterized. In contrast to s.c. inoculation, all tumors from i.p.-inoculated mice contained high levels of recombinant MCF virus. Furthermore, Southern blot analyses demonstrated that the majority of the tumors contained altered Mo+PyF101 M-MuLV long terminal repeats. The U3 regions from several tumors with altered long terminal repeats were cloned by PCR amplification. Sequence analyses indicated that the M-MuLV 75-bp tandem repeat in the enhancer region was triplicated. This amplification was also previously observed in mice infected s.c. with a pseudotypic mixture of Mo+PyF101 M-MuLV and Mo+PyF101 MCF virus. The enhancer triplication was an early event, and it occurred within 2 weeks postinfection. Recombinant MCF viruses were not detected by Southern blot analyses until 4 weeks postinfection. Thus, the M-MuLV enhancer triplication event was initially important for efficient propagation of ecotropic Mo+PyF101 M-MuLV. The increased leukemogenicity following i.p. inoculation could be explained if the triplication enhances Mo+PyF101 M-MuLV replication in the bone marrow and bone marrow infection is required for recombinant MCF virus formation.  相似文献   

3.
R Fulton  M Plumb  L Shield    J C Neil 《Journal of virology》1990,64(4):1675-1682
The long terminal repeat U3 sequences were determined for multiple feline leukemia virus proviruses isolated from naturally occurring T-cell tumors. Heterogeneity was evident, even among proviruses cloned from individual tumors. Proviruses with one, two, or three repeats of the long terminal repeat enhancer sequences coexisted in one tumor, while two proviruses with distinct direct repeats were found in another. The enhancer repeats are characteristic of retrovirus variants with accelerated leukemogenic potential and occur between -155 and -244 base pairs relative to the RNA cap site. The termini of the repeats occur at or near sequence features which have been recognized at other retrovirus recombinational junctions. In vitro footprint analysis of the feline leukemia virus enhancer revealed three major nuclear protein binding sites, located at consensus sequences for the simian virus 40 core enhancer, the nuclear factor 1 binding site, and an indirect repeat which is homologous to the PEA2 binding site in the polyomavirus enhancer. Only the simian virus 40 core enhancer sequence is present in all of the enhancer repeats. Cell type differences in binding activities to the three motifs may underlie the selective process which leads to outgrowth of viruses with specific sequence duplications.  相似文献   

4.
Oncogenic mink cell focus-forming (MCF) viruses, such as MCF 247, show a positive correlation between the ability to replicate efficiently in the thymus and a leukemogenic phenotype. Other MCF viruses, such as MCF 30-2, replicate to high titers in thymocytes and do not accelerate the onset of leukemia. We used these two MCF viruses with different biological phenotypes to distinguish the effect of specific viral genes and genetic determinants on thymotropism and leukemogenicity. Our goal was to identify the viral sequences that distinguish thymotropic, nonleukemogenic viruses such as MCF 30-2 from thymotropic, leukemogenic viruses such as MCF 247. We cloned MCF 30-2, compared the genetic hallmarks of MCF 30-2 with those of MCF 247, constructed a series of recombinants, and tested the ability of recombinant viruses to replicate in the thymus and to induce leukemia. The results established that (i) MCF 30-2 and MCF 247 differ in the numbers of copies of the enhancer sequences in the long terminal repeats. (ii) The thymotropic phenotype of both viruses is independent of the number of copies of the enhancer sequences. (iii) The oncogenic phenotype of MCF 247 is correlated with the presence in the virus of duplicated enhancer sequences or with the presence of an enhancer with a specific sequence. These results show that the pathogenic phenotypes of MCF viruses are dissociable from the thymotropic phenotype and depend, at least in part, upon the enhancer sequences. On the basis of these results, we suggest that the molecular mechanisms by which the enhancer sequences determine thymotropism are different from those that determine oncogenicity.  相似文献   

5.
Despite the high degree of homology (91%) between the nucleotide sequences of the Friend-mink cell focus-forming (MCF) and the Moloney murine leukemia virus (MuLV) genomic long terminal repeats (LTRs), the pathogenicities determined by the LTR sequences of the two viruses are quite different. Friend-MCF MuLV is an erythroid leukemia virus, and Moloney MuLV is a lymphoid leukemia virus. To map the LTR sequences responsible for the different disease specificities, we constructed nine viruses with LTRs recombinant between the Friend-MCF and Moloney MuLVs. Analysis of the leukemia induced with the recombinant viruses showed that a 195-base-pair nucleotide sequence, including a 75-base-pair nucleotide Moloney enhancer, is responsible for the tissue-specific leukemogenicity of Moloney MuLV. However, not only the enhancer but also its downstream sequences appear to be necessary. The Moloney virus enhancer and its downstream sequence exerted a dominant effect over that of the Friend-MCF virus, but the enhancer sequence alone did not. The results that three of the nine recombinant viruses induced both erythroid and lymphoid leukemias supported the hypothesis that multiple viral genetic determinants control both the ability to cause leukemia and the type of leukemia induced.  相似文献   

6.
7.
8.
9.
The oncogenic potential of many nonacute retroviruses is dependent on the duplication of the enhancer sequences present in the unique 3′ (U3) region of the long terminal repeat (LTR). In a molecular clone (MCF 247-W) of the murine leukemia virus MCF 247, a leukemogenic mink cell focus-inducing (MCF) virus, the U3 enhancer sequences are tandemly repeated in the LTR. We mutated the enhancer region of MCF 247-W to test the hypothesis that the duplicated enhancer sequences of this virus have a sequence-specific and/or a stereospecific role in enhancer function required for transformation. In one virus, we inserted 14 nucleotide bp into the novel sequence generated at the junction of the two enhancers to generate an MCF virus with an interrupted enhancer region. In the second virus, only one copy of the enhancer sequences was present. This second virus also lacked the junction sequence present between the two enhancers of MCF 247-W. Both viruses were less leukemogenic and had a longer mean latency period than MCF 247-W. These data indicate that the sequence generated at the junction of the two enhancers and/or the stereospecific arrangement of the two enhancer elements are required for the full oncogenic potential of MCF 247-W. We analyzed proviral LTRs within the c-myc locus in tumor DNAs from mice injected with the MCF virus with the interrupted enhancer region. Some of the proviral LTRs integrated upstream of c-myc contain enhancer regions that are larger than those of the injected virus. These results are consistent with the suggestion that the virus with an interrupted enhancer changes in vivo to perform its role in the transformation of T cells.  相似文献   

10.
We tested the ability of sequences in the long terminal repeat (LTR) of a mink cell focus-forming (MCF) murine leukemia virus to function as an enhancer in a cell-type-specific manner. In a stable transformation assay, the MCF or Akv LTR and the simian virus 40 enhancer had similar activities in murine fibroblasts. In contrast, the MCF LTR had a significantly greater activity in murine T lymphoid cells than did either the simian virus 40 enhancer or the Akv LTR.  相似文献   

11.
F K Yoshimura  J Tupper    K Diem 《Journal of virology》1989,63(11):4945-4948
Long terminal repeat (LTR) sequences of murine leukemia viruses (MLVs) have been demonstrated to be mainly responsible for the pathogenic differences in these retroviruses. A region of the LTR which is downstream of the enhancer elements has been shown to contribute both to enhancer activity as well as to disease specificity of MLVs. We have identified protein-DNA complexes generated by this region of a lymphomagenic MLV (MCF13) and one which is nonpathogenic (Akv). One protein-DNA complex we have observed for this region is unique to MCF13 DNA sequences. Detection of protein involved in this unique MCF13 complex in different cell lines revealed that it was ubiquitous.  相似文献   

12.
13.
We have used deletion and recombinant long terminal repeat (LTR) mutants to examine enhancer activity differences between LTRs of the nonpathogenic Akv and the thymus lymphomagenic MCF13 murine retroviruses. Deletion mutant analysis revealed that major control regions for MCF13 and Akv LTR enhancer activity were similar but not identical. For both LTRs, major control regions were distinctly different in a murine T-cell and a fibroblast cell line. Recombinant enhancer analysis showed that LTRs could be divided into three regions capable of altering the level of enhancer activity through cooperative or antagonistic interaction. The contribution of each region to enhancer activity was dependent on its context with respect to the other regions. LTR enhancer function in different cell types appears to be the result of the interaction of enhancer modular elements.  相似文献   

14.
15.
16.
17.
18.
The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. Despite their different pathogenicity, the nucleotide sequences of the env gene of Friend MCF virus and Moloney MCF virus were quite homologous, suggesting that the putative parent sequence for the generation of both MCF viruses and the recombinational mechanism for their generation might be the same. We compare the amino acid sequences in lymphoid leukemia-inducing ecotropic Moloney virus and Moloney MCF virus, and erythroblastic leukemia-inducing ecotropic Friend virus, Friend-MCF virus, and Friend spleen focus-forming virus. The Friend MCF virus long terminal repeat was found to be 550 base pairs long. This contained two copies of the 39-base-pair tandem repeat, whereas the spleen focus-forming virus genome contained a single copy of the same sequence.  相似文献   

19.
Structure and expression of mouse VL30 genes.   总被引:20,自引:8,他引:12       下载免费PDF全文
DNA sequencing and blot hybridization analyses have been used to study the structure of a mouse VL30 gene and the molecular nature of VL30-related RNA which is induced upon the stimulation of cultured AKR mouse embryo cells with defined peptide growth factors. An integrated mouse VL30 gene was found to contain identical 601-base-pair long terminal repeats (LTRs) which were themselves terminated in short inverted repeats. The entire VL30 gene was flanked by a 4-base-pair direct repeat of cellular DNA. Thus, VL30 genes are structurally analogous to integrated forms of retrovirus proviruses and certain other classes of mobile genetic elements. The LTR sequence was found to contain putative promoter and polyadenylation signals and generally exhibited little sequence homology to murine leukemia virus proviral LTRs. Certain short regions of sequence conservation, however, were evident, including the inverted terminal repeat, LTR-adjacent regions corresponding to origins of murine leukemia virus proviral DNA synthesis, and a 36-base-pair direct repeat bearing homology to the 72-base-pair direct repeat (enhancer sequence) of the murine leukemia virus-related Moloney sarcoma virus. Upon mitogenic stimulation of quiescent cells with epidermal growth factor and insulin, a major 5.5-kilobase VL30-specific RNA complementary to both LTR and non-LTR sequences was rapidly induced. We conclude that a complete VL30 gene(s) is highly regulated by peptide growth factor binding to specific membrane receptors in these cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号