共查询到20条相似文献,搜索用时 0 毫秒
1.
Yersinia pseudotuberculosis binds to beta1 integrin receptors, and uses the type III secretion proteins YopB and YopD to introduce pores and to translocate Yop effectors directly into host cells. Y. pseudotuberculosis lacking effectors that inhibit Rho GTPases, YopE and YopT, have high pore forming activity. Here, we present evidence that Y. pseudotuberculosis selectively modulates Rho activity to induce cellular changes that control pore formation and effector translocation. Inhibition of actin polymerization decreased pore formation and YopE translocation in HeLa cells infected with Y. pseudotuberculosis. Inactivation of Rho, Rac, and Cdc42 by treatment with Clostridium difficile toxin B inhibited pore formation and YopE translocation in infected HeLa cells. Expression of a dominant negative form of Rac did not reduce the uptake of membrane impermeable dyes in HeLa cells infected with a pore forming strain YopEHJT(-). Similarly, the Rac inhibitor NSC23766 did not decrease pore formation or translocation, although it efficiently hindered Rac-dependent bacterial uptake. In contrast, C. botulinum C3 potently reduced pore formation and translocation, implicating Rho A, B, and/or C in the control of the Yop delivery. An invasin mutant (Y. pseudotuberculosis invD911E) that binds to beta1 integrins, but inefficiently transduces signals through the receptors, was defective for YopE translocation. Interfering with the beta1 integrin signaling pathway, by inhibiting Src kinase activity, negatively affected YopE translocation. Additionally, Y. pseudotuberculosis infection activated Rho by a mechanism that was dependent on YopB and on high affinity bacteria interaction with beta1 integrin receptors. We propose that Rho activation, mediated by signals triggered by the YopB/YopD translocon and from engagement of beta1 integrin receptors, stimulates actin polymerization and activates the translocation process, and that once the Yops are translocated, the action of YopE or YopT terminate delivery of Yops and prevents pore formation. 相似文献
2.
Wickham ME Lupp C Vázquez A Mascarenhas M Coburn B Coombes BK Karmali MA Puente JL Deng W Finlay BB 《Microbes and infection / Institut Pasteur》2007,9(3):400-407
Severe disease caused by Shiga toxin-producing Escherichia coli (STEC) has been associated with a pathogenicity island, O-Island 122, which encodes the type III secretion system-effector NleE. Here we show that full virulence of the related attaching and effacing mouse pathogen Citrobacter rodentium requires NleE. Relative to wild-type bacteria, nleE-mutant C. rodentium are attenuated for colonisation in mice in both single and mixed infections. Examination of the ability of nleE-mutant bacteria to induce pathologic change in vivo revealed that nleE-mutant bacteria induce significantly less pathologic change than wild-type bacteria in susceptible mice. Consistent with these results, mice infected with nleE-mutant bacteria exhibit delayed mortality. These results suggested that pathologic change during attaching and effacing pathogen infection may associate with the degree of pathogen colonisation. Using mutants of 23 type III secretion genes, including the type III effectors nleC, nleD, nleE and nleF, the association of pathologic change with the ability of these mutants to colonise mice was examined. The induction of in vivo disease correlates strongly with the degree of colonisation, suggesting that the colonisation advantage type III secretion genes afford the bacteria, contribute to, and are required for, full virulence. 相似文献
3.
The direct transport of virulence proteins from bacterium to host has emerged as a common strategy employed by Gram-negative pathogens to establish infections. Specialized secretion systems function to facilitate this process. The delivery of 'effector' proteins by these secretion systems is currently confined to two functionally similar but mechanistically distinct pathways, termed type III and type IV secretion. The type III secretion pathway is ancestrally related to the multiprotein complexes that assemble flagella, whereas the type IV mechanism probably emerged from the protein complexes that support conjugal transfer of DNA. Although both pathways serve to transport proteins from the bacterium to host, the recognition of the effector protein substrates and the secretion information contained in these proteins appear highly distinct. Here, we review the mechanisms involved in the selection of substrates by each of these transport systems and secretion signal information required for substrate transport. 相似文献
4.
SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells 总被引:8,自引:0,他引:8
Brumell JH Kujat-Choy S Brown NF Vallance BA Knodler LA Finlay BB 《Traffic (Copenhagen, Denmark)》2003,4(1):36-48
Salmonella typhimurium is a facultative intracellular pathogen that utilizes two type III secretion systems to deliver virulence proteins into host cells. These proteins, termed effectors, alter host cell function to allow invasion into and intracellular survival/replication within a vacuolar compartment. Here we describe SopD2, a novel member of the Salmonella translocated effector (STE) family, which share a conserved N-terminal type III secretion signal. Disruption of the sopD2 gene prolonged the survival of mice infected with a lethal dose of Salmonella typhimurium , demonstrating a significant role for this effector in pathogenesis. Expression of sopD2 was induced inside host cells and was dependent on functional ssrA/B and phoP/Q, two component regulatory systems. HA-tagged SopD2 was delivered into HeLa cells in a SPI-2-dependent manner and associated with both the Salmonella -containing vacuole and with swollen endosomes elsewhere in the cell. Subcellular fractionation confirmed that SopD2 was membrane associated in host cells, while the closely related effector SopD was localized to the cytosol. A SopD2 fusion to GFP associated with small tubular structures and large vesicles containing late endocytic markers, including Rab7. Surprisingly, expression of N-terminal amino acids 1–150 of SopD2 fused to GFP was sufficient to mediate both binding to late endosomes/lysosomes and swelling of these compartments. These findings demonstrate that the N-terminus of SopD2 is a bifunctional domain required for both type III secretion out of Salmonella as well as late endosome/lysosome targeting following translocation into host cells . 相似文献
5.
Bacterial type III secretion systems are thought to translocate virulence proteins directly from the bacterial cytoplasm into host cells through a continuous molecular channel. Little is known about how the apparatus itself interacts with membranes and whether insertion of this structure into the host membrane has consequences for the bacteria apart from its beneficial role in delivering virulence proteins. New evidence suggests that membrane insertion of the bacterial type III apparatus might turn on a calcium-dependent signaling pathway resulting in phagolysosomal fusion. 相似文献
6.
Pseudomonas syringae type III effector AvrPtoB is phosphorylated in plant cells on serine 258, promoting its virulence activity 总被引:1,自引:0,他引:1
The Pseudomonas syringae pv. tomato protein AvrPtoB is translocated into plant cells via the bacterial type III secretion system. In resistant tomato leaves, AvrPtoB acts as an avirulence protein by interacting with the host Pto kinase and eliciting the host immune response. Pto-mediated immunity requires Prf, a Pto-interacting protein with a putative nucleotide-binding site and a region of leucine-rich repeats. In susceptible tomato plants, which lack either Pto or Prf, AvrPtoB acts as a virulence protein by promoting P. syringae pv. tomato growth and enhancing symptoms associated with bacterial speck disease. The N-terminal 307 amino acids of AvrPtoB (designated AvrPtoB(1-307)) are sufficient for these virulence activities and for Pto-mediated avirulence. We report that AvrPtoB is phosphorylated by a Pto- and Prf-independent kinase activity that is conserved in several plant species, including tomato (Solanum lycopersicum), Nicotiana benthamiana, and Arabidopsis thaliana. AvrPtoB(1-307) was phosphorylated in tomato protoplasts, and mass spectrometry identified serine 258 as the major in vivo phosphorylation site of this protein. An alanine substitution of Ser(258) resulted in the loss of virulence and the diminution of avirulence activity of AvrPtoB(1-307), whereas a phosphomimetic S258D mutant had activities similar to wild type AvrPtoB(1-307). These observations suggest that AvrPtoB has evolved to mimic a substrate of a conserved plant kinase, leading to enhancement of its virulence and avirulence activities in the host cell. 相似文献
7.
8.
Walch B Breinig T Geginat G Schmitt MJ Breinig F 《Microbes and infection / Institut Pasteur》2011,13(11):908-913
Yeast-mediated protein delivery to mammalian antigen-presenting cells is a powerful approach for inducing cell-mediated immune responses. We show that coexpression of the pore-forming protein listeriolysin O from Listeria monocytogenes leads to improved translocation of a proteinaceous antigen and subsequent activation of specific T lymphocytes. As the resulting yeast carrier is self-attenuated and killed after antigen delivery without exhibiting any toxic effect on antigen-presenting cells, this novel carrier system suggests itself as promising approach for the development of yeast-based live vaccines. 相似文献
9.
Salmonella species translocate effector proteins into the host cell cytoplasm using a type III secretion system (TTSS). The translocation machinery probably contacts the eukaryotic cell plasma membrane to effect protein transfer. Data presented here demonstrate that both SspB and SspC, components of the translocation apparatus, are inserted into the epithelial cell plasma membrane 15 min after Salmonella typhimurium infection. In addition, a yeast two-hybrid interaction between SspC and an eukaryotic intermediate filament protein was identified. Three individual carboxyl-terminal point mutations within SspC that disrupt the yeast two-hybrid interaction were isolated. Strains expressing the mutant SspC alleles were defective for invasion, translocation of effector molecules and membrane localization of SspC. These data indicate that insertion of SspC into the plasma membrane of target cells is required for invasion and effector molecule translocation and that the carboxyl terminus of SspC is essential for these functions. 相似文献
10.
Delahay RM Knutton S Shaw RK Hartland EL Pallen MJ Frankel G 《The Journal of biological chemistry》1999,274(50):35969-35974
Enteropathogenic E. coli (EPEC) utilize a type III secretion system to deliver virulence-associated effector proteins to the host cell. Four proteins, EspA, EspB, EspD, and Tir, which are integral to the formation of characteristic "attaching and effacing" (A/E) intestinal lesions, are known to be exported via the EPEC type III secretion system. Recent work demonstrated that EspA is a major component of a filamentous structure, elaborated on the surface of EPEC, which is required for translocation of EspB and Tir. The carboxyl terminus of EspA is predicted to comprise an alpha-helical region, which demonstrates heptad periodicity whereby positions a and d in the heptad repeat unit abcdefg are occupied by hydrophobic residues, indicating a propensity for coiled-coil interactions. Here we demonstrate multimeric EspA isoforms in EPEC culture supernatants and EspA:EspA interaction on solid phase. Non-conservative amino acid substitution of specific EspA heptad residues generated EPEC mutants defective in filament assembly but which retained the ability to induce A/E lesions; additional mutation totally abolished EspA filament assembly and A/E lesion formation. These results demonstrate a similarity to flagellar biosynthesis and indicate that the coiled-coil domain of EspA is required for assembly of the EspA filament-associated type III secretion translocon. 相似文献
11.
Shirakashi R Köstner CM Müller KJ Kürschner M Zimmermann U Sukhorukov VL 《The Journal of membrane biology》2002,189(1):45-54
The disaccharide trehalose is increasingly being used as a very efficient stabilizer of cells, membranes and macromolecules during cryo- and lyoconservation. Although extracellular trehalose can reduce cryo- and lyodamage to mammalian cells, the sugar is required on both sides of the plasma membrane for maximum protection efficiency. In the present study, mouse myeloma cells were loaded with the disaccharide by means of reversible electropermeabilization in isotonic trehalose-substituted medium, which contained 290 mM trehalose as the major solute. By using the membrane-impermeable fluorescent dye propidium iodide as the reporter molecule, optimum electropulsing conditions were found, at which most permeabilized cells survived and recovered (i.e., resealed) their original membrane integrity within a few minutes after electric treatment. Microscopic examination during the resealing phase revealed that electropulsed cells shrank gradually to about 60% of their original volume. The kinetics of the dye uptake and the volumetric response of cells to electropulsing were analyzed using a theoretical model that relates the observed cell volume changes to the solute transport across the transiently permeabilized cell membrane. From the best fit of the model to the experimental data, the intracellular trehalose concentration in electropulsed cells was estimated to be about 100 mM. This loading efficiency compares favorably to other methods currently used for intracellular trehalose delivery. The results presented here point toward application of the electropermeabilization technique for loading cells with membrane-impermeable bioprotectants, with far-reaching implications for cryo- and lyopreservation of rare and valuable mammalian cells and tissues. 相似文献
12.
To analyze whether metabolite import into Pectobacterium atrosepticum cells affects bacterial virulence, we investigated the function of a carrier which exhibits significant structural homology to characterized carboxylic-acid transport proteins. The corresponding gene, ECA3984, previously annotated as coding for a Na(+)/sulphate carrier, in fact encodes a highly specific citrate transporter (Cit1) which is energized by the proton-motive force. Expression of the cit1 gene is stimulated by the presence of citrate in the growth medium and is substantial during growth of P. atrosepticum on potato tuber tissue. Infection of tuber tissue with P. atrosepticum leads to reduced citrate levels. P. atrosepticum insertion mutants, lacking the functional Cit1 protein, did not grow in medium containing citrate as the sole carbon source, showed a substantially reduced ability to macerate potato tuber tissue, and did not provoke reduced citrate levels in the plant tissue upon infection. We propose that citrate uptake into P. atrosepticum is critical for full bacterial virulence. 相似文献
13.
A colorimetric assay for studying effector secretion through the bacterial type III secretion system
Miyake M Sakane S Kobayashi C Hanajima-Ozawa M Fukui A Kamitani S Horiguchi Y 《FEMS microbiology letters》2008,278(1):36-42
We have devised a colorimetric method that monitors secretion of effector proteins into host cytoplasm through the bacterial type III secretion machinery. Here we used constructs of effectors fused with Bordetella adenylate cyclase as a reporter, but evaluated the effector translocation by quantifying cell viability, rather than by measuring the intracellular cAMP concentration. This is based on our findings that cells infected by a secretion-competent bacterium expressing the fusion protein lost their viability under our experimental conditions. Cell death was quantified using commercially available reagents and basic research equipment. An observation that cell death was potentiated when the infected cells were treated with 2-deoxyglucose and sodium azide suggests that the depletion of intracellular ATP is partly involved in the process. Using enteropathogenic Escherichia coli, we demonstrated that the method was applicable to at least three effectors of bacteria, Tir, EspF, and Map, and was useful for studying a secretion signal sequence for Tir. This technically simple and inexpensive method is a good alternative to the existing procedure for studying the mechanism by which effectors are secreted through the type III secretion system in a high-throughput format. 相似文献
14.
The type III secretion system (T3SS) is a complex macromolecular machinery employed by a number of Gram-negative species to initiate infection. Toxins secreted through the system are synthesized in the bacterial cytoplasm and utilize the T3SS to pass through both bacterial membranes and the periplasm, thus being introduced directly into the eukaryotic cytoplasm. A key element of the T3SS of all bacterial pathogens is the translocon, which comprises a pore that is inserted into the membrane of the target cell, allowing toxin injection. Three macromolecular partners associate to form the translocon: two are hydrophobic and one is hydrophilic, and the latter also associates with the T3SS needle. In this review, we discuss recent advances on the biochemical and structural characterization of the proteins involved in translocon formation, as well as their participation in the modification of intracellular signalling pathways upon infection. Models of translocon assembly and regulation are also discussed. 相似文献
15.
16.
Salmonella type III secretion-associated protein InvE controls translocation of effector proteins into host cells 下载免费PDF全文
Salmonella enterica encodes a type III secretion system (TTSS) within a pathogenicity island located at centisome 63 (SPI-1), which is essential for its pathogenicity. This system mediates the transfer of a battery of bacterial proteins into the host cell with the capacity to modulate cellular functions. The transfer process is dependent on the function of protein translocases SipB, SipC, and SipD. We report here that Salmonella protein InvE, which is also encoded within SPI-1, is essential for the translocation of bacterial proteins into host cells. An S. enterica serovar Typhimurium mutant carrying a loss-of-function mutation in invE shows reduced secretion of SipB, SipC, and SipD while exhibiting increased secretion of other TTSS effector proteins. We also demonstrate that InvE interacts with a protein complex formed by SipB, SipC, and their cognate chaperone, SicA. We propose that InvE controls protein translocation by regulating the function of the Sip protein translocases. 相似文献
17.
Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system 总被引:11,自引:0,他引:11
Plasmodium sporozoites, the transmission form of the malaria parasite, successively invade salivary glands in the mosquito vector and the liver in the mammalian host. Sporozoite capacity to invade host cells is mechanistically related to their ability to glide on solid substrates, both activities depending on the transmembrane protein TRAP. Here, we show that loss-of- function mutations in two adhesive modules of the TRAP ectodomain, an integrin-like A-domain and a thrombospondin type I repeat, specifically decrease sporozoite invasion of host cells but do not affect sporozoite gliding and adhesion to cells. Irrespective of the target cell, i.e. in mosquitoes, rodents and cultured human or hamster cells, sporozoites bearing mutations in one module are less invasive, while those bearing mutations in both modules are non-invasive. In Chinese hamster ovary cells, the TRAP modules interact with distinct cell receptors during sporozoite invasion, and thus act as independently active pass keys. As these modules are also present in other members of the TRAP family of proteins in Apicomplexa, they may account for the capacity of these parasites to enter many cell types of phylogenetically distant origins. 相似文献
18.
Zhang XM Ellis S Sriratana A Mitchell CA Rowe T 《The Journal of biological chemistry》2004,279(41):43027-43034
Rab/Ypt GTPases play key roles in the regulation of vesicular trafficking. They perform most of their functions in a GTP-bound form by interacting with specific downstream effectors. The exocyst is a complex of eight polypeptides involved in constitutive secretion and functions as an effector for multiple Ras-related small GTPases, including the Rab protein Sec4p in yeast. In this study, we have examined the localization and function of the Sec15 exocyst subunit in mammalian cells. Overexpressed Sec15 associated with clusters of tubular/vesicular elements that were concentrated in the perinuclear region. The tubular/vesicular clusters were dispersed throughout the cytoplasm upon treatment with the microtubule-depolymerizing agent nocodazole and were accessible to endocytosed transferrin, but not exocytic cargo (vesicular stomatitis virus glycoprotein). Consistent with these observations, Sec15 colocalized selectively with the recycling endosome marker Rab11 and exhibited a GTP-dependent interaction with the Rab11 GTPase, but not with Rab4, Rab6, or Rab7. These findings provide the first evidence that the exocyst functions as a Rab effector complex in mammalian cells. 相似文献
19.
During cotranslational protein integration into the ER membrane, each transmembrane (TM) segment moves laterally through the translocon to reach the lipid bilayer. Photocrosslinking studies reveal that a particular surface of each nascent chain TM alpha helix and signal-anchor sequence always faces Sec61alpha in the translocon. This nonrandom and TM sequence-dependent positioning reveals that each TM segment makes specific contacts with Sec61alpha and is retained at a fixed location within the translocon, observations that are best explained by the binding of each TM sequence to a translocon protein(s). Since TM sequence hydrophobicity does not correlate with its rate of release from the translocon, nascent chain movement through the translocon appears to be mediated primarily by protein-protein interactions rather than hydrophobic nascent chain-phospholipid interactions. 相似文献