首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene (ST1218) encoding a d-3-phosphoglycerate dehydrogenase (PGDH; EC 1.1.1.95) homolog was found in the genome of Sulfolobus tokodaii strain 7 by screening a database of enzymes likely to contribute to l-serine biosynthesis in hyperthermophilic archaea. After expressing the gene in Escherichia coli, the PGDH activity of the recombinant enzyme was assessed. Homogeneous PGDH was obtained using conventional chromatography steps, though during the purification an unexpected decline in enzyme activity was observed if the enzyme was stored in plastic tubes, but not in glass ones. The purified enzyme was a homodimer with a subunit molecular mass of about 35 kDa and was highly thermostable. It preferably acted as an NAD-dependent d-3-phosphoglycerate (3PGA) dehydrogenase. Although NADP had no activity as the electron acceptor, both NADPH and NADH acted as electron donors. Kinetic analyses indicated that the enzyme reaction proceeds via a Theorell-Chance Bi-Bi mechanism. Unlike E. coli PGDH, the S. tokodaii enzyme was not inhibited by l-serine. In addition, both the NAD-dependent 3PGA oxidation and the reverse reaction were enhanced by phosphate and sulfate ions, while NADPH-dependent 3-phosphohydroxypyruvate (PHP) reduction was inhibited. Thus S. tokodaii PGDH appears to be subject to a novel regulatory mechanism not seen elsewhere. A database analysis showed that ST1218 gene forms a cluster with ST1217 gene, and a functional analysis of the ST1217 product expressed in E. coli revealed that it possesses l-glutamate-PHP aminotransferase activity. Taken together, our findings represent the first example of a phosphorylated serine pathway in a hyperthermophilic archaeon.  相似文献   

2.
Glycogenin initiates the biosynthesis of proteoglycogen, the mammalian glycogenin-bound glycogen, by intramolecular autoglucosylation. The incubation of glycogenin with UDP-glucose results in formation of a tyrosine-bound maltosaccharide, reaching maximum polymerization degree of 13 glucose units at cessation of the reaction. No exhaustion of the substrate donor occurred at the autoglucosylation end and the full autoglucosylated enzyme continued catalytically active for transglucosylation of the alternative substrate dodecyl-maltose. Even the autoglucosylation cessation once glycogenin acquired a mature maltosaccharide moiety, proteoglycogen and glycogenin species ranging rM 47-200 kDa, derived from proteoglycogen, showed to be autoglucosylable. The results describe for the first time the ability of polysaccharide-bound glycogenin for intramolecular autoglucosylation, providing evidence for cessation of the glucose polymerization initiated into the tyrosine residue, by inaccessibility of the acquired maltosaccharide moiety to further autoglucosylation.  相似文献   

3.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

4.
The crystal structures of three vancomycin complexes with two vancomycin-sensitive cell-wall precursor analogs (diacetyl-Lys-D-Ala-D-Ala and acetyl-D-Ala-D-Ala) and a vancomycin-resistant cell-wall precursor analog (diacetyl-Lys-D-Ala-D-lactate) were determined at atomic resolutions of 1.80 A, 1.07 A, and 0.93 A, respectively. These structures not only reconfirm the "back-to-back" dimerization of vancomycin monomers and the ligand-binding scheme proposed by previous experiments but also show important structural features of strategies for the generation of new glycopeptide antibiotics. These structural features involve a water-mediated antibiotic-ligand interaction and supramolecular structures such as "side-by-side" arranged dimer-to-dimer structures, in addition to ligand-mediated and "face-to-face" arranged dimer-to-dimer structures. In the diacetyl-Lys-D-Ala-D-lactate complex, the interatomic O...O distance between the carbonyl oxygen of the fourth residue of the antibiotic backbone and the ester oxygen of the D-lactate moiety of the ligand is clearly longer than the corresponding N-H...O hydrogen-bonding distance observed in the two other complexes due to electrostatic repulsion. In addition, two neighboring hydrogen bonds are concomitantly lengthened. These observations provide, at least in part, a molecular basis for the reduced antibacterial activity of vancomycin toward vancomycin-resistant bacteria with cell-wall precursors terminating in -D-Ala-D-lactate.  相似文献   

5.
A Glu141Asn mutant Paracoccus sp. 12-A formate dehydrogenase catalyzes marked glyoxylate reduction. Additional replacement of the His332-Gln313 pair with His-Glu, which is a consensus acid/base catalyst in D-hydroxyacid dehydrogenases, further improved the catalytic activity of the enzyme as to glyoxylate reduction through enhancement of the hydrogen transfer step in the catalytic process, slightly shifting the optimal pH for the reaction. On the other hand, the replacement induced no marked activity toward other 2-ketoacid substrates, and diminished the enzyme activity as to formate oxidation. Consequently, the formate dehydrogenase was converted to a highly specific and active glyoxylate reductase through only the two amino acid replacements.  相似文献   

6.
YteR, a hypothetical protein with unknown functions, is derived from Bacillus subtilis strain 168 and has an overall structure similar to that of bacterial unsaturated glucuronyl hydrolase (UGL), although it exhibits little amino acid sequence identity with UGL. UGL releases unsaturated glucuronic acid from glycosaminoglycan treated with glycosaminoglycan lyases. The amino acid sequence of YteR shows a significant homology (26% identity) with the hypothetical protein YesR also from B. subtilis strain 168. To clarify the intrinsic functions of YteR and YesR, both proteins were overexpressed in Escherichia coli, purified, and characterized. Based on their gene arrangements in genome and enzyme properties, YteR and YesR were found to constitute a novel enzyme activity, "unsaturated rhamnogalacturonyl hydrolase," classified as new glycoside hydrolase family 105. This enzyme acts specifically on unsaturated rhamnogalacturonan (RG) obtained from RG type-I treated with RG lyases and releases an unsaturated galacturonic acid. The crystal structure of YteR complexed with unsaturated chondroitin disaccharide (UGL substrate) was obtained and compared to the structure of UGL complexed with the same disaccharide. The UGL substrate is sterically hindered with the active pocket of YteR. The protruding loop of YteR prevents the UGL substrate from being bound effectively. The most likely candidate catalytic residues for general acid/base are Asp143 in YteR and Asp135 in YesR. This is supported by three-dimensional structural and site-directed mutagenesis studies. These findings provide molecular insights into novel enzyme catalysis and sequential reaction mechanisms involved in RG-I depolymerization by bacteria.  相似文献   

7.
This article describes a successful application of l-lysine ε-oxidase (EC 1.4.3.20) for l-lysine determination. l-Lysine ε-oxidase was isolated from culture supernatant of Marinomonas mediterranea NBRC 103028T and was used for l-lysine determination. Comparison of the characteristics of l-lysine ε-oxidase with l-lysine α-oxidase, a commercial enzyme used for l-lysine determination, suggests that the use of l-lysine ε-oxidase would be more valuable for the determination of l-lysine because of its selectivity and sensitivity, especially in samples with low l-lysine concentration. The enzyme acted only on l-lysine and l-ornithine, to which the relative activity was only 3.4% of that on l-lysine. The value obtained by the colorimetric assay using l-lysine ε-oxidase and horseradish peroxidase was not affected by l-ornithine. The enzyme also shows a higher affinity for l-lysine (Km = 0.0018 mM). l-Lysine determination using l-lysine ε-oxidase in human plasma and serum was examined. The measured values were close to values determined by instrumental analyses using the precolumn AccQ·Tag Ultra Derivatization Kit. These results suggest that l-lysine ε-oxidase can be used for diagnosis based on plasma l-lysine concentration. This is the first report on the application of l-lysine ε-oxidase.  相似文献   

8.
l-Xylulose was used as a raw material for the production of l-xylose with a recombinantly produced Escherichia colil-fucose isomerase as the catalyst. The enzyme had a very alkaline pH optimum (over 10.5) and displayed Michaelis-Menten kinetics for l-xylulose with a Km of 41 mM and a Vmax of 0.23 μmol/(mg min). The half-lives determined for the enzyme at 35 °C and at 45 °C were 6 h 50 min and 1 h 31 min, respectively. The reaction equilibrium between l-xylulose and l-xylose was 15:85 at 35 °C and thus favored the formation of l-xylose. Contrary to the l-rhamnose isomerase catalyzed reaction described previously [14]l-lyxose was not detected in the reaction mixture with l-fucose isomerase. Although xylitol acted as an inhibitor of the reaction, even at a high ratio of xylitol to l-xylulose the inhibition did not reach 50%.  相似文献   

9.
ABSTRACT

An N-lauroyl-l-phenylalanine-producing bacterium, identified as Burkholderia sp. strain LP5_18B, was isolated from a soil sample. The enzyme was purified from the cell-free extract of the strain and shown to catalyze degradation and synthesis activities toward various N-acyl-amino acids. N-lauroyl-l-phenylalanine and N-lauroyl-l-arginine were obtained with especially high yields (51% and 89%, respectively) from lauric acid and l-phenylalanine or l-arginine by the purified enzyme in an aqueous system. The gene encoding the novel aminoacylase was cloned from Burkholderia sp. strain LP5_18B and expressed in Escherichia coli. The gene contains an open reading frame of 1,323 nucleotides. The deduced protein sequence encoded by the gene has approximately 80% amino acid identity to several hydratase of Burkholderia. The addition of zinc sulfate increased the aminoacylase activity of the recombinant E. coli strain.  相似文献   

10.
Somatic angiotensin I-converting enzyme (s-ACE) plays a central role in blood pressure regulation and has been the target of most antihypertensive drugs. A displacement isothermal titration calorimetry method has been used to accurately determine the binding constant of three strong s-ACE inhibitors. Under the experimental conditions studied in this work, the relative potency of the inhibitors was determined to be enalaprilat>lisinopril>captopril. We analyze the thermodynamic behaviour of the binding process using the new structural information provided by the ACE structures, as well as the conformational changes that occur upon binding.  相似文献   

11.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

12.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   

13.
An efficient and practical route for the large-scale synthesis of 2-deoxy-L-erythro-pentose (2-deoxy-L-ribose) starting from L-arabinose was developed using Barton-type free-radical deoxygenation reaction as a key step. The radical precursor, a phenoxythiocarbonyl ester, was prepared in situ, and the most efficient deoxygenation was achieved by slow addition of tributyltin hydride to the reaction mixture.  相似文献   

14.
Sato D  Nakada-Tsukui K  Okada M  Nozaki T 《FEBS letters》2006,580(22):5306-5312
The enteric protozoan parasite Entamoeba histolytica uniquely possesses two isotypes of ICPs, a novel class of inhibitors for cysteine proteases. These two EhICPs showed a remarkable difference in the ability to inhibit cysteine protease (CP) 5, a well-established virulence determinant, whereas they equally inhibited CP1 and CP2. Immunofluorescence imaging and cellular fractionation showed that EhICP1 and EhICP2 are localized to distinct compartments. While EhICP1 is localized to the soluble cytosolic fraction, EhICP2 is targeted from lysosomes to phagosomes upon erythrocyte engulfment. Overexpression of either EhICP1 or EhICP2 caused reduction of intracellular CP activity, but not the amount of CP, and decrease in the secretion of all major CPs, suggesting that both EhICPs are involved in the trafficking and/or interference with the major CP activity. These data indicate that the two EhICPs, present in distinct subcellular compartments, negatively regulate CP secretion, and, thus, the virulence of this parasite.  相似文献   

15.
A species of rice bran lipase (lipase II) was purified by ammonium sulfate precipitation, followed by successive chromatographies on DEAE-cellulose, Sephadex G–75 and CH-Sephadex C–50. Both polyacrylamide disc electrophoresis and ultracentrifugation demonstrated that the enzyme protein is homogeneous. The isoelectric point of the enzyme was 9.10 by ampholine electrophoresis. The sedimentation coefficient of the enzyme was evaluated to be 2.60 S, and the molecular weight to be 33,300 according to Archbald’s method. The enzyme showed the optimum pH between 7.5 and 8.0, and the optimum temperature at about 27°C. It was stable over the pH range from 5 to 9.5 and below 30°C. In substrate specificity, the enzyme exhibited a high specificity toward triglycerides having short-carbon chain fatty acids, although it was capable of hydrolyzing the ester bonds in the rice and olive oil.  相似文献   

16.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

17.
l-ribose isomerase (L-RI) from Cellulomonas parahominis MB426 can convert l-psicose and d-tagatose to l-allose and d-talose, respectively. Partially purified recombinant L-RI from Escherichia coli JM109 was immobilized on DIAION HPA25L resin and then utilized to produce l-allose and d-talose. Conversion reaction was performed with the reaction mixture containing 10% l-psicose or d-tagatose and immobilized L-RI at 40 °C. At equilibrium state, the yield of l-allose and d-talose was 35.0% and 13.0%, respectively. Immobilized enzyme could convert l-psicose to l-allose without remarkable decrease in the enzyme activity over 7 times use and d-tagatose to d-talose over 37 times use. After separation and concentration, the mixture solution of l-allose and d-talose was concentrated up to 70% and crystallized by keeping at 4 °C. l-Allose and d-talose crystals were collected from the syrup by filtration. The final yield was 23.0% l-allose and 7.30% d-talose that were obtained from l-psicose and d-tagatose, respectively.  相似文献   

18.
Dominik Mojzita 《FEBS letters》2010,584(16):3540-3544
l-Xylulose reductase is part of the eukaryotic pathway for l-arabinose catabolism. A previously identified l-xylulose reductase in Hypocrea jecorina turned out to be not the ‘true’ one since it was not upregulated during growth on l-arabinose and the deletion strain showed no reduced l-xylulose reductase activity but instead lost the d-mannitol dehydrogenase activity [17]. In this communication we identified the ‘true’ l-xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on l-arabinose and the deletion results in a strain lacking the NADPH-specific l-xylulose reductase activity and having reduced growth on l-arabinose. The purified enzyme had a Km for l-xylulose of 25 mM and a νmax of 650 U/mg.  相似文献   

19.
The enzyme L-asparaginase (ASNASE), which hydrolyzes L-asparagine (L-Asn) to ammonia and L-aspartic acid (L-Asp), is commonly used for remission induction in acute lymphoblastic leukemia. To correlate ASNASE activity with L-Asn reduction in human serum, sensitive methods for the determination of ASNASE activity are required. Using L-aspartic beta-hydroxamate (AHA) as substrate we developed a sensitive plate reader-based method for the quantification of ASNASE derived from Escherichia coli and Erwinia chrysanthemi and of pegylated E. coli ASNASE in human serum. ASNASE hydrolyzed AHA to L-Asp and hydroxylamine, which was determined at 710 nm after condensation with 8-hydroxyquinoline and oxidation to indooxine. Measuring the indooxine formation allowed the detection of 2 x 10(-5)U ASNASE in 20 microl serum. Linearity was observed within 2.5-75 and 75-1,250 U/L with coefficients of correlation of r(2)>0.99. The coefficients of variation for intra- and interday variability for the three different ASNASE enzymes were 1.98 to 8.77 and 1.73 to 11.0%. The overall recovery was 101+/-9.92%. The coefficient of correlation for dilution linearity was determined as r(2)=0.986 for dilutions up to 1:20. This method combined with sensitive methods for the quantification of L-Asn will allow bioequivalence studies and individualized therapeutic drug monitoring of different ASNASE preparations.  相似文献   

20.
The enzymatic characterization of GDP-d-mannose 3',5'-epimerase (GME), a key enzyme in the biosynthesis of vitamin C in plants is described. The GME gene (Genbank Accession No. AB193582) in rice was cloned, and expressed as a fusion protein in Escherichia coli. Reaction products from GDP-d-mannose, as produced by GME catalysis, were separated by recycling HPLC on an ODS column, and were determined to be GDP-l-galactose and GDP-l-gulose, based on their NMR spectra and sugar analysis. The reaction catalyzed by GME was inhibited by GDP, and was strongly accelerated by NAD(+) in contrast to the case of GME from Arabidopsis thaliana. This difference in the effect of NAD(+) on GME activity can be attributed to the NAD binding domain which is conserved in the rice gene, but not in the Arabidopsis thaliana gene. The apparent K(m) and k(cat) were determined to be 1.20x10(-5)M and 0.127s(-1), respectively, in the presence of 20microM NAD(+). The fractions of GDP-d-mannose, GDP-l-galactose and GDP-l-gulose, at equilibrium, were approximately 0.75, 0.20 and 0.05, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号