首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combination of high-resolution atomic force microscopy imaging and single-molecule force spectroscopy allows the identification, selection, and mechanical investigation of individual proteins. In a recent paper we had used this technique to unfold and extract single bacteriorhodopsins (BRs) from native purple membrane patches. We show that subsets of the unfolding spectra can be classified and grouped to reveal detailed insight into the individualism of the unfolding pathways. We have further developed this technique and analysis to report here on the influence of pH effects and local mutations on the stability of individual structural elements of BR against mechanical unfolding. We found that, although the seven transmembrane alpha-helices predominantly unfold in pairs, each of the helices may also unfold individually and in some cases even only partially. Additionally, intermittent states in the unfolding process were found, which are associated with the stretching of the extracellular loops connecting the alpha-helices. This suggests that polypeptide loops potentially act as a barrier to unfolding and contribute significantly to the structural stability of BR. Chemical removal of the Schiff base, the covalent linkage of the photoactive retinal to the helix G, resulted in a predominantly two-step unfolding of this helix. It is concluded that the covalent linkage of the retinal to helix G stabilizes the structure of BR. Trapping mutant D96N in the M state of the proton pumping photocycle did not affect the unfolding barriers of BR.  相似文献   

2.
Synaptotagmin I is the major Ca2+ sensor for membrane fusion during neurotransmitter release. The cytoplasmic domain of synaptotagmin consists of two C2 domains, C2A and C2B. On binding Ca2+, the tips of the two C2 domains rapidly and synchronously penetrate lipid bilayers. We investigated the forces of interaction between synaptotagmin and lipid bilayers using single-molecule force spectroscopy. Glutathione-S-transferase-tagged proteins were attached to an atomic force microscope cantilever via a glutathione-derivatized polyethylene glycol linker. With wild-type C2AB, the force profile for a bilayer containing phosphatidylserine had both Ca2+-dependent and Ca2+-independent components. No force was detected when the bilayer lacked phosphatidylserine, even in the presence of Ca2+. The binding characteristics of C2A and C2B indicated that the two C2 domains cooperate in binding synaptotagmin to the bilayer, and that the relatively weak Ca2+-independent force depends only on C2A. When the lysine residues K189-192 and K326, 327 were mutated to alanine, the strong Ca2+-dependent binding interaction was either absent or greatly reduced. We conclude that synaptotagmin binds to the bilayer via C2A even in absence of Ca2+, and also that positively charged regions of both C2A and C2B are essential for the strong Ca2+-dependent binding of synaptotagmin to the bilayer.  相似文献   

3.
原子力显微镜单分子力谱研究生物分子间相互作用   总被引:2,自引:0,他引:2  
原子力显微镜单分子力谱是近年来发展起来的能在单分子水平研究生物分子相互作用的新工具。本文综述了单分子力谱的测定原理、方法及其在研究蛋白.蛋白、蛋白-DNA相互作用,蛋白质去折叠和活细胞上配体/受体结合中的应用进展。  相似文献   

4.
Single-molecule force spectroscopy (SMFS) using the atomic force microscope (AFM) has emerged as an important tool for probing biomolecular interaction and exploring the forces, dynamics, and energy landscapes that underlie function and specificity of molecular interaction. These studies require attaching biomolecules on solid supports and AFM tips to measure unbinding forces between individual binding partners. Herein we describe efficient and robust protocols for probing RNA interaction by AFM and show their value on two well-known RNA regulators, the Rev-responsive element (RRE) from the HIV-1 genome and an adenine-sensing riboswitch. The results show the great potential of AFM–SMFS in the investigation of RNA molecular interactions, which will contribute to the development of bionanodevices sensing single RNA molecules.  相似文献   

5.
Over the past 10 years, a growing field of research supporting the value of myeloperoxidase (MPO) as a prognostic indicator in acute cardiac pathophysiologies has emerged. The availability of a rapid and disposable MPO detection platform would enable research clinicians to more readily assess MPO indications for guiding therapy and also facilitate clinicians at the patient interface to readily adopt MPO testing and potentially drive more informed prognoses. Here we describe the isolation of a high-affinity avian MPO-specific recombinant antibody panel using phage display. Rapid isolation of a suitable single-chain variable fragment (scFv) antibody was facilitated using a surface plasmon resonance (SPR)-based “off-rate ranking” screening process. The selected scFv was then successfully incorporated into a rapid, simple, and sensitive one-step lateral flow immunoassay (LFIA) for the detection of MPO. This “one-step” feature of the developed assay was made possible by the scFv’s strong affinity for MPO, obviating the need for sandwich signal enhancement steps. The assay’s rapid performance was also further enhanced by exploiting the intrinsic enzymatic properties of MPO in its final detection. Use of the optimized LFIA facilitated the sensitive detection of MPO in MPO-depleted serum within clinically relevant reference ranges.  相似文献   

6.
Protein misfolding is conformational transition dramatically facilitating the assembly of protein molecules into aggregates of various morphologies. Spontaneous formation of specific aggregates, mostly amyloid fibrils, was initially believed to be limited to proteins involved in the development of amyloidoses. However, recent studies show that, depending on conditions, the majority of proteins undergo structural transitions leading to the appearance of amyloidogenic intermediates followed by aggregate formation. Various techniques have been used to characterize the protein misfolding facilitating the aggregation process, but no direct evidence as to how such a conformational transition increases the intermolecular interactions has been obtained as of yet. We have applied atomic force microscopy (AFM) to follow the interaction between protein molecules as a function of pH. These studies were performed for three unrelated and structurally distinctive proteins, alpha-synuclein, amyloid beta-peptide (Abeta) and lysozyme. It was shown that the attractive force between homologous protein molecules is minimal at physiological pH and increases dramatically at acidic pH. Moreover, the dependence of the pulling forces is sharp, suggesting a pH-dependent conformational transition within the protein. Parallel circular dichroism (CD) measurements performed for alpha-synuclein and Abeta revealed that the decrease in pH is accompanied by a sharp conformational transition from a random coil at neutral pH to the more ordered, predominantly beta-sheet, structure at low pH. Importantly, the pH ranges for these conformational transitions coincide with those of pulling forces changes detected by AFM. In addition, protein self-assembly into filamentous aggregates studied by AFM imaging was shown to be facilitated at pH values corresponding to the maximum of pulling forces. Overall, these results indicate that proteins at acidic pH undergo structural transition into conformations responsible for the dramatic increase in interprotein interaction and promoting the formation of protein aggregates.  相似文献   

7.
Detailed mechanisms of DNA clamps in prokaryotic and eukaryotic systems were investigated by probing their mechanics with single-molecule force spectroscopy. Specifically, the mechanical forces required for the Escherichia coli and Saccharomyces cerevisiae clamp opening were measured at the single-molecule level by optical tweezers. Steered molecular dynamics simulations further examined the forces involved in DNA clamp opening from the perspective of the interface binding energies associated with the clamp opening processes. In combination with additional molecular dynamics simulations, we identified the contact networks between the clamp subunits that contribute significantly to the interface stability of the S.cerevisiae and E. coli clamps. These studies provide a vivid picture of the mechanics and energy landscape of clamp opening and reveal how the prokaryotic and eukaryotic clamps function through different mechanisms.  相似文献   

8.
Cell-cell adhesion mediated by specific cell-surface molecules is essential for multicellular development. Here we quantify de-adhesion forces at the resolution of individual cell-adhesion molecules, by controlling the interactions between single cells and combining single-molecule force spectroscopy with genetic manipulation. Our measurements are focused on a glycoprotein, contact site A (csA), as a prototype of cell-adhesion proteins. csA is expressed in aggregating cells of Dictyostelium discoideum, which are engaged in development of a multicellular organism. Adhesion between two adjacent cell surfaces involves discrete interactions characterized by an unbinding force of 23 +/- 8 pN, measured at a rupture rate of 2.5 +/- 0.5 microm s-1.  相似文献   

9.
Using single-molecule force spectroscopy we characterized inter- and intramolecular interactions stabilizing structural segments of individual bacteriorhodopsin (BR) molecules assembled into trimers and dimers, and monomers. While the assembly of BR did not vary the location of these structural segments, their intrinsic stability could change up to 70% increasing from monomer to dimer to trimer. Since each stable structural segment established one unfolding barrier, we conclude that the locations of unfolding barriers were determined by intramolecular interactions but that their strengths were strongly influenced by intermolecular interactions. Subtracting the unfolding forces of the BR trimer from that of monomer allowed us to calculate the contribution of inter- and intramolecular interactions to the membrane protein stabilization. Statistical analyses showed that the unfolding pathways of differently assembled BR molecules did not differ in their appearance but in their population. This suggests that in our experiments the membrane protein assembly does not necessarily change the location of unfolding barriers within the protein, but certainly their strengths, and thus alters the probability of a protein to choose certain unfolding pathways.  相似文献   

10.
Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs.  相似文献   

11.
Protein–DNA interactions are involved in many biochemical pathways and determine the fate of the corresponding cell. Qualitative and quantitative investigations on these recognition and binding processes are of key importance for an improved understanding of biochemical processes and also for systems biology. This review article focusses on atomic force microscopy (AFM)-based single-molecule force spectroscopy and its application to the quantification of forces and binding mechanisms that lead to the formation of protein–DNA complexes. AFM and dynamic force spectroscopy are exciting tools that allow for quantitative analysis of biomolecular interactions. Besides an overview on the method and the most important immobilization approaches, the physical basics of the data evaluation is described. Recent applications of AFM-based force spectroscopy to investigate DNA intercalation, complexes involving DNA aptamers and peptide– and protein–DNA interactions are given.  相似文献   

12.
Monoclonal IgY have the potential to become unique tools for diagnostic research and therapeutic purposes since avian antibodies provide several advantages due to their phylogenetic difference when compared to mammalian antibodies. The mechanism of avian immunoglobulin gene diversification renders chicken an excellent source for the generation of recombinant scFv as well as Fab antibody libraries of high diversity. One major limitation of these antibody fragments, however, is their monovalent format, impairing the functional affinity of the molecules and, thereby, their applicability in prevalent laboratory methods. In this study, we generated vectors for conversion of avian recombinant antibody fragments into different types of bivalent IgY antibody formats. To combine the properties of established mammalian monoclonal antibodies with those of IgY constant domains, we additionally generated bivalent murine/avian chimeric antibody constructs. When expressed in HEK-293 cells, all constructs yielded bivalent disulfide-linked antibodies, which exhibit a glycosylation pattern similar to that of native IgY as assessed by lectin blot analysis. After purification by one step procedures, the chimeric and the entire avian bivalent antibody formats were analyzed for antigen binding and interaction with secondary reagents. The data demonstrate that all antibody formats provide comparable antigen binding characteristics and the well established properties of avian constant domains.  相似文献   

13.
Single-molecule methods such as force spectroscopy give experimental access to the mechanical properties of protein molecules. So far, owing to the limitations of recombinant construction of polyproteins, experimental access has been limited to mostly the N-to-C terminal direction of force application. This protocol gives a fast and simple alternative to current recombinant strategies for preparing polyproteins. We describe in detail the method to construct polyproteins with precisely controlled linkage topologies, based on the pairwise introduction of cysteines into protein structure and subsequent polymerization in solution. Stretching such constructed polyproteins in an atomic force microscope allows mechanical force application to a single protein structure via two precisely controlled amino acid positions in the functional three-dimensional protein structure. The capability for site-directed force application can provide valuable information about both protein structure and directional protein mechanics. This protocol should be applicable to almost any protein that can be point mutated. Given correct setup of all necessary reagents, this protocol can be accomplished in fewer than 10 d.  相似文献   

14.
Nanomechanical analysis of proteins by single-molecule force spectroscopy based on atomic force microscopy is increasingly being used to investigate the inner workings of mechanical proteins and substrate proteins of unfoldase machines as well as to gain new insight into the process of protein folding. However, such studies are hindered by a number of technical problems, including the noise of the proximal region, ambiguous single-molecule identification, as well as difficulties in protein expression/folding and full-length purification. To overcome these major drawbacks in protein nanomechanics, we designed a family of cloning/expression vectors, termed pFS (plasmid for force spectroscopy), that essentially has an unstructured region to surmount the noisy proximal region, a homomeric polyprotein marker, a carrier to mechanically protect the protein of interest (only the pFS-2 version) that also acts as a reporter, and two purification tags. pFS-2 enables the unambiguous analysis of proteins with low mechanical stability or/and complex force spectra, such as the increasingly abundant class of intrinsically disordered proteins, which are hard to characterize by traditional bulk techniques and have important biological and clinical implications. The advantages, applications, and potential of this ready-to-go system are illustrated through the analysis of representative proteins.  相似文献   

15.
16.
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).  相似文献   

17.
Cao Y  Li H 《Biophysical journal》2011,101(8):2009-2017
Many proteins in living cells require cofactors to carry out their biological functions. To reach their functional states, these proteins need to fold into their unique three-dimensional structures in the presence of their cofactors. Two processes, folding of the protein and binding of cofactors, intermingle with each other, making the direct elucidation of the folding mechanism of proteins in the presence of cofactors challenging. Here we use single-molecule atomic force microscopy to directly monitor the folding and cofactor binding dynamics of an engineered metal-binding protein G6-53 at the single-molecule level. Using the mechanical stability of different conformers of G6-53 as sensitive probes, we directly identified different G6-53 conformers (unfolded, apo- and Ni2+-bound) populated along the folding pathway of G6-53 in the presence of its cofactor Ni2+. By carrying out single-molecule atomic force microscopy refolding experiments, we monitored kinetic evolution processes of these different conformers. Our results suggested that the majority of G6-53 folds through a binding-after-folding mechanism, whereas a small fraction follows a binding-before-folding pathway. Our study opens an avenue to utilizing force spectroscopy techniques to probe the folding dynamics of proteins in the presence of cofactors at the single-molecule level, and we anticipated that this method can be used to study a wide variety of proteins requiring cofactors for their function.  相似文献   

18.
Early Metazoans had to evolve the first cell adhesion system addressed to maintaining stable interactions between cells constituting different individuals. As the oldest extant multicellular animals, sponges are good candidates to have remnants of the molecules responsible for that crucial innovation. Sponge cells associate in a species-specific process through multivalent calcium-dependent interactions of carbohydrate structures on an extracellular membrane-bound proteoglycan termed aggregation factor. Single-molecule force spectroscopy studies of the mechanics of aggregation factor self-binding indicate the existence of intermolecular carbohydrate adhesion domains. A 200-kDa aggregation factor glycan (g200) involved in cell adhesion exhibits interindividual differences in size and epitope content which suggest the existence of allelic variants. We have purified two of these g200 distinct forms from two individuals of the same sponge species. Comparison of allotypic versus isotypic g200 binding forces reveals significant differences. Surface plasmon resonance measurements show that g200 self-adhesion is much stronger than its binding to other unrelated glycans such as chondroitin sulfate. This adhesive specificity through multiple carbohydrate binding domains is a type of cooperative interaction that can contribute to explain some functions of modular proteoglycans in general. From our results it can be deduced that the binding strength/surface area between two aggregation factor molecules is comparable with that of focal contacts in vertebrate cells, indicating that strong carbohydrate-based cell adhesions evolved at the very start of Metazoan history.  相似文献   

19.
Single-molecule force spectroscopy has become a versatile tool for investigating the (un)folding of proteins and other polymeric molecules. Like other single-molecule techniques, single-molecule force spectroscopy requires recording and analysis of large data sets to extract statistically meaningful conclusions. Here, we present a data analysis tool that provides efficient filtering of heterogeneous data sets, brings spectra into register based on a reference-free alignment algorithm, and determines automatically the location of unfolding barriers. Furthermore, it groups spectra according to the number of unfolding events, subclassifies the spectra using cross correlation-based sorting, and extracts unfolding pathways by principal component analysis and clustering methods to extracted peak positions. Our approach has been tested on a data set obtained through mechanical unfolding of bacteriorhodopsin (bR), which contained a significant number of spectra that did not show the well-known bR fingerprint. In addition, we have tested the performance of the data analysis tool on unfolding data of the soluble multidomain (Ig27)(8) protein.  相似文献   

20.
Smad7 is an antagonist of TGF-β signaling pathway and the mechanism of its inhibitory effect is of great interest. We recently found that Smad7 could function in the nucleus by binding to the DNA elements containing the minimal Smad binding element CAGA box. In this work, we further applied single-molecule force spectroscopy to study the DNA-binding property of Smad7. Smad7 showed similar binding strength to the oligonucleotides corresponding to the CAGA-containing activin responsive element (ARE) and the PAI-1 promoter, as that of Smad4. However, Smad7 also exhibited a binding activity to the mutant ARE with the CAGA sequence substituted, indicating its DNA-binding specificity is different from other Smads. Moreover, we demonstrated that the MH2 domain of Smad7 had a higher binding affinity to the DNA elements than the full-length Smad7, while the N-terminal domain exhibited an inhibitory effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号