首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon nitrogen step-down, some filamentous cyanobacteria differentiate heterocysts, cells specialized for dinitrogen fixation, a highly oxygen sensitive process. Aerobic respiration is one of the mechanisms responsible for a microaerobic environment in heterocysts and respiratory terminal oxidases are the key enzymes of the respiratory chains. We used Anabaena variabilis strain ATCC 29413, because it is one of the few heterocyst-forming facultatively chemoheterotrophic cyanobacteria amenable to genetic manipulation. Using PCR with degenerate primers, we found four gene loci for respiratory terminal oxidases, three of which code for putative cytochrome c oxidases and one whose genes are homologous to cytochrome bd-type quinol oxidases. One cytochrome c oxidase, Cox2, was the only enzyme whose expression, tested by RT-PCR, was evidently up-regulated in diazotrophy, and therefore cloned, sequenced, and characterized. Up-regulation of Cox2 was corroborated by Northern and primer extension analyses. Strains were constructed lacking Cox1 (a previously characterized cytochrome c oxidase), Cox2, or both, which all grew diazotrophically. In vitro cytochrome c oxidase and respiratory activities were determined in all strains, allowing for the first time to estimate the relative contributions to total respiration of the different respiratory electron transport branches under different external conditions. Especially adding fructose to the growth medium led to a dramatic enhancement of in vitro cytochrome c oxidation and in vivo respiratory activity without significantly influencing gene expression.  相似文献   

2.
Upon nitrogen step-down, some filamentous cyanobacteria differentiate heterocysts, cells specialized for dinitrogen fixation, a highly oxygen sensitive process. Aerobic respiration is one of the mechanisms responsible for a microaerobic environment in heterocysts and respiratory terminal oxidases are the key enzymes of the respiratory chains. We used Anabaena variabilis strain ATCC 29413, because it is one of the few heterocyst-forming facultatively chemoheterotrophic cyanobacteria amenable to genetic manipulation. Using PCR with degenerate primers, we found four gene loci for respiratory terminal oxidases, three of which code for putative cytochrome c oxidases and one whose genes are homologous to cytochrome bd-type quinol oxidases. One cytochrome c oxidase, Cox2, was the only enzyme whose expression, tested by RT-PCR, was evidently up-regulated in diazotrophy, and therefore cloned, sequenced, and characterized. Up-regulation of Cox2 was corroborated by Northern and primer extension analyses. Strains were constructed lacking Cox1 (a previously characterized cytochrome c oxidase), Cox2, or both, which all grew diazotrophically. In vitro cytochrome c oxidase and respiratory activities were determined in all strains, allowing for the first time to estimate the relative contributions to total respiration of the different respiratory electron transport branches under different external conditions. Especially adding fructose to the growth medium led to a dramatic enhancement of in vitro cytochrome c oxidation and in vivo respiratory activity without significantly influencing gene expression.  相似文献   

3.
We identified the molecular structures of all carotenoids in Anabaena variabilis ATCC 29413 (= IAM M-204). The major carotenoids were beta-carotene, echinenone and canthaxanthin. Myxol glycosides were absent, while free forms of myxol and 4-hydroxymyxol were present. The 4-hydroxyl group of the latter was a mixture of (4R) and (4S) configurations, which is a rare mixture in carotenoids. Thus, this strain was the first cyanobacterium found to have free myxol and not myxol glycosides, and seemed to lack the gene for or activity of glycosyl transferase. In another strain of A. variabilis IAM M-3 (= PCC 7118), we recently identified (3R,2'S)-myxol 2'-fucoside and (3S,2'S)-4-ketomyxol 2'-fucoside, and hence the strain ATCC 29413 might be useful for investigating the characteristics of myxol glycosides in cyanobacteria. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the genome in A. variabilis ATCC 29413, we proposed a biosynthetic pathway of the carotenoids and the corresponding genes and enzymes. The homologous genes were searched by sequence homology only from the functionally confirmed genes.  相似文献   

4.
多变鱼腥藻ATCC 29413有潜力发展为异养生长产异形胞蓝藻的研究模式种, 但由于细胞内的限制-修饰系统等原因, 其基因转移效率极低。研究克隆了该藻株的两个甲基化酶(M. AvaⅠ和M. AvrⅡ)基因ava_3181和ava_4359, 构建了辅助质粒pHB6088, 对运载质粒进行甲基化保护以避免被细胞中的限制酶切割。以ava_1237和ava_4412基因为例, 研究证明利用该辅助质粒和接合转移系统可通过双交换对多变鱼腥藻ATCC 29413的基因实现一步插入失活。  相似文献   

5.
T Thiel 《Journal of bacteriology》1993,175(19):6276-6286
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium that has been reported to fix nitrogen and reduce acetylene to ethane in the absence of molybdenum. DNA from this strain hybridized well at low stringency to the nitrogenase 2 (vnfDGK) genes of Azotobacter vinelandii. The hybridizing region was cloned from a lambda EMBL3 genomic library of A. variabilis, mapped, and sequenced. The deduced amino acid sequences of the vnfD and vnfK genes of A. variabilis showed only about 56% similarity to the nifDK genes of Anabaena sp. strain PCC 7120 but were 76 to 86% similar to the anfDK or vnfDK genes of A. vinelandii. The organization of the vnf gene cluster in A. variabilis was similar to that of A. vinelandii. However, in A. variabilis, the vnfG gene was fused to vnfD; hence, this gene is designated vnfDG. A vnfH gene was not contiguous with the vnfDG gene and has not yet been identified. A mutant strain, in which a neomycin resistance cassette was inserted into the vnf cluster, grew well in a medium lacking a source of fixed nitrogen in the presence of molybdenum but grew poorly when vanadium replaced molybdenum. In contrast, the parent strain grew equally well in media containing either molybdenum or vanadium. The vnf genes were transcribed in the absence of molybdenum, with or without vanadium. The vnf gene cluster did not hybridize to chromosomal DNA from Anabaena sp. strain PCC 7120 or from the heterotrophic strains, Nostoc sp. strain Mac and Nostoc sp. strain ATCC 29150. A hybridizing ClaI fragment very similar in size to the A. variabilis ClaI fragment was present in DNA isolated from several independent, cultured isolates of Anabaena sp. from the Azolla symbiosis.  相似文献   

6.
T Thiel  E M Lyons    J C Erker 《Journal of bacteriology》1997,179(16):5222-5225
Anabaena variabilis ATCC 29413 is a filamentous heterocystous cyanobacterium that fixes nitrogen under a variety of environmental conditions. Under aerobic growth conditions, nitrogen fixation depends upon differentiation of heterocysts and expression of either a Mo-dependent nitrogenase or a V-dependent nitrogenase in those specialized cells. Under anaerobic conditions, a second Mo-dependent nitrogenase gene cluster, nifII, was expressed in vegetative cells long before heterocysts formed. A strain carrying a mutant gene in the nifII cluster did not fix nitrogen under anaerobic conditions until after heterocysts differentiated. The nifII cluster was similar in organization to the nifI cluster that is expressed in heterocysts and that includes nifBSUHDKENXW as well as three open reading frames that are conserved in both cyanobacterial nif clusters.  相似文献   

7.
Anabaena variabilis ATCC 29413 is a heterotrophic, nitrogen-fixing cyanobacterium containing both a Mo-dependent nitrogenase encoded by the nif genes and V-dependent nitrogenase encoded by the vnf genes. The nifB, nifS, and nifU genes of A. variabilis were cloned, mapped, and partially sequenced. The fdxN gene was between nifB and nifS. Growth and acetylene reduction assays using wild-type and mutant strains indicated that the nifB product (NifB) was required for nitrogen fixation not only by the enzyme encoded by the nif genes but also by the enzyme encoded by the vnf genes. Neither NifS nor NifU was essential for nitrogen fixation in A. variabilis.  相似文献   

8.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

9.
Corynebacterium glutamicum possesses two terminal oxidases, cytochrome aa3 and cytochrome bd. Cytochrome aa3 forms a supercomplex with the cytochrome bc1 complex, which contains an unusual diheme cytochrome c1. Both the bc1 -aa3 supercomplex and cytochrome bd transfer reducing equivalents from menaquinol to oxygen; however, they differ in their proton translocation efficiency by a factor of three. Here, we analyzed the role of cytochrome bd for growth and lysine production. When cultivated in glucose minimal medium, a cydAB deletion mutant of C. glutamicum ATCC 13032 grew like the wild type in the exponential phase, but growth thereafter was inhibited, leading to a biomass formation 40% less than that of the wild type. Constitutive overproduction of functional cytochrome bd oxidase in ATCC 13032 led to a reduction of the growth rate by approximately 45% and of the maximal biomass by approximately 35%, presumably as a consequence of increased electron flow through the inefficient cytochrome bd oxidase. In the L-lysine-producing C. glutamicum strain MH20-22B, deletion of the cydAB genes had only minor effects on growth rate and biomass formation, but lysine production was increased by approximately 12%. Thus, the respiratory chain was shown to be a target for improving amino acid production by C. glutamicum.  相似文献   

10.
11.
12.
The gram-positive endospore-forming bacterium Bacillus subtilis has, under aerobic conditions, a branched respiratory system comprising one quinol oxidase branch and one cytochrome oxidase branch. The system terminates in one of four alternative terminal oxidases. Cytochrome caa(3) is a cytochrome c oxidase, whereas cytochrome bd and cytochrome aa(3) are quinol oxidases. A fourth terminal oxidase, YthAB, is a putative quinol oxidase predicted from DNA sequence analysis. None of the terminal oxidases are, by themselves, essential for growth. However, one quinol oxidase (cytochrome aa(3) or cytochrome bd) is required for aerobic growth of B. subtilis strain 168. Data indicating that cytochrome aa(3) is the major oxidase used by exponentially growing cells in minimal and rich medium are presented. We show that one of the two heme-copper oxidases, cytochrome caa(3) or cytochrome aa(3), is required for efficient sporulation of B. subtilis strain 168 and that deletion of YthAB in a strain lacking cytochrome aa(3) makes the strain sporulation deficient.  相似文献   

13.
Molybdenum is an essential component of the cofactors of many metalloenzymes including nitrate reductase and Mo-nitrogenase. The cyanobacterium Anabaena variabilis ATCC 29413 uses nitrate and atmospheric N2 as sources of nitrogen for growth. Two of the three nitrogenases in this strain are Mo-dependent enzymes, as is nitrate reductase; thus, transport of molybdate is important for growth of this strain. High-affinity transport of molybdate in A. variabilis was mediated by an ABC-type transport system encoded by the products of modA and modBC. The modBC gene comprised a fused orf including components corresponding to modB and modC of Escherichia coli. The deduced ModC part of the fused gene lacked a recognizable molybdate-binding domain. Expression of modA and modBC was induced by starvation for molybdate. Mutants in modA or modBC were unable to grow using nitrate or Mo-nitrogenase. Growth using the alternative V-nitrogenase was not impaired in the mutants. A high concentration of molybdate (10 microM) supported normal growth of the modBC mutant using the Nif1 Mo-nitrogenase, indicating that there was a low-affinity molybdate transport system in this strain. The modBC mutant did not detectably transport low concentrations of 99Mo (molybdate), but did transport high concentrations. However, such transport was observed only after cells were starved for sulphate, suggesting that an inducible sulphate transport system might also serve as a low-affinity molybdate transport system in this strain.  相似文献   

14.
The aerobic respiratory system of Bacillus subtilis 168 is known to contain three terminal oxidases: cytochrome caa(3), which is a cytochrome c oxidase, and cytochrome aa(3) and bd, which are quinol oxidases. The presence of a possible fourth oxidase in the bacterium was investigated using a constructed mutant, LUH27, that lacks the aa(3) and caa(3) terminal oxidases and is also deficient in succinate:menaquinone oxidoreductase. The cytochrome bd content of LUH27 can be varied by using different growth conditions. LUH27 membranes virtually devoid of cytochrome bd respired with NADH or exogenous quinol as actively as preparations containing 0.4 nmol of cytochrome bd/mg of protein but were more sensitive to cyanide and aurachin D. The reduced minus oxidized difference spectra of the bd-deficient membranes as well as absorption changes induced by CO and cyanide indicated the presence of a "cytochrome o"-like component; however, the membranes did not contain heme O. The results provide strong evidence for the presence of a terminal oxidase of the bb' type in B. subtilis. The enzyme does not pump protons and combines with CO much faster than typical heme-copper oxidases; in these respects, it resembles a cytochrome bd rather than members of the heme-copper oxidase superfamily. The genome sequence of B. subtilis 168 contains gene clusters for four respiratory oxidases. Two of these clusters, cta and qox, are deleted in LUH27. The remaining two, cydAB and ythAB, encode the identified cytochrome bd and a putative second cytochrome bd, respectively. Deletion of ythAB in strain LUH27 or the presence of the yth genes on plasmid did not affect the expression of the bb' oxidase. It is concluded that the novel bb'-type oxidase probably is cytochrome bd encoded by the cyd locus but with heme D being substituted by high spin heme B at the oxygen reactive site, i.e. cytochrome b(558)b(595)b'.  相似文献   

15.
Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa(3)-type cytochrome c oxidase. The confirmed molecular weights of the α-subunit (52.5 kDa), the β-subunit (25 kDa), and the γ-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the γ-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa(3)-type cytochrome c oxidase. This is the first report to indicate that aa(3)-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  相似文献   

16.
17.
We investigated the genetic basis for mycosporine sunscreen biosynthesis by the cyanobacterium Nostoc punctiforme ATCC 29133. Heterologous expression in Escherichia coli of three contiguous N. punctiforme genes (NpR5600, NpR5599, and NpR5598, here named mysA, mysB, and mysC, respectively) led to the production of mycosporine-glycine, an oxomycosporine. Additional expression of gene NpF5597 (mysD) led to the conversion of mycosporine-glycine into iminomycosporines (preferentially shinorine but also others like mycosporine-2-glycine and porphyra-334). This represents a new mode of enzymatic synthesis for iminomycosporines, one that differs in genetic origin, mechanism, and apparent substrate specificity from that known in Anabaena variabilis ATCC 29413. These results add to the emerging profile of the protein family of ATP-dependent ligases, to which the mysC product belongs, as important condensation enzymes in microbial secondary metabolism.  相似文献   

18.
Mutations in the genes coding for the soluble and the membrane-bound hydrogenase of Alcaligenes eutrophus strain H16 significantly affected the expression of respiratory chain components. In lithoautotrophically grown wild type cells electron flow mainly proceeded via the cytochrome c oxidases. Mutants defective in the membrane-bound hydrogenase contained a 2- to 3-fold higher cytochrome a content than the wild type and cytochrome c oxidase of the aa3-type was preferentially used by these cells for substrate oxidation. Mutants impaired in the soluble hydrogenase revealed slow growth on hydrogen, presumably due to inefficient reverse electron flow mechanisms which provide the cells with NADH for autotrophic CO2-fixation. In this class of mutants the two quinol oxidases of the o- and d-type in addition to the co-type oxidase were the predominant electron-transport branches.  相似文献   

19.
The cytochrome o complex is one of two ubiquinol oxidases in the aerobic respiratory system of Escherichia coli. This enzyme catalyzes the two-electron oxidation of ubiquinol-8 which is located in the cytoplasmic membrane, and the four-electron reduction of molecular oxygen to water. The purified oxidase contains at least four subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and has been shown to couple electron flux to the generation of a proton motive force across the membrane. In this paper, the DNA sequence of the cyo operon, containing the structural genes for the oxidase, is reported. This operon is shown to encode five open reading frames, cyoABCDE. The gene products of three of these, cyoA, cyoB, and cyoC, are clearly related to subunits II, I, and III, respectively, of the eukaryotic and prokaryotic aa3-type cytochrome c oxidases. This family of cytochrome c oxidases contain heme a and copper as prosthetic groups, whereas the E. coli enzyme contains heme b (protoheme IX) and copper. The most striking sequence similarities relate the large subunits (I) of both the E. coli quinol oxidase and the cytochrome c oxidases. It is likely that the sequence similarities reflect a common molecular architecture of the two heme binding sites and of a copper binding site in these enzymes. In addition, the cyoE open reading frame is closely related to a gene denoted ORF1 from Paracoccus dentrificans which is located in between the genes encoding subunits II and III of the cytochrome c oxidase of this organism. The function of the ORF1 gene product is not known. These sequence relationships define a superfamily of membrane-bound respiratory oxidases which share structural features but which have different functions. The E. coli cytochrome o complex oxidizes ubiquinol but has no ability to catalyze the oxidation of reduced cytochrome c. Nevertheless, it is clear that the E. coli oxidase and the aa3-type cytochrome c oxidases must have very similar structures, at least in the vicinity of the catalytic centers, and they are very likely to have similar mechanisms for bioenergetic coupling (proton pumping).  相似文献   

20.
HetR, a serine type protease, plays an important role in heterocyst differentiation in filamentous cyanobacteria. We isolated and sequenced the hetR genes from different heterocystous and filamentous nonheterocystous cyanobacteria. The hetR gene in the heterocyst forming Anabaena variabilis ATCC 29413 FD was interrupted by interposon mutagenesis (mutant strain WSIII8). This mutant does not form heterocysts and shows no diazotrophic growth under aerobic conditions. However, under anaerobic N(2)-fixing conditions, the WSIII8 cells are able to grow, and high nitrogenase (Nif2) activity is detectable. Nif2 expression was demonstrated in each vegetative cell of the filament by immunolocalization 4 h after nitrogen step-down.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号