首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the effects of high salt stress on PS II in detached wheat (Triticum aestivum) leaves, the seedlings were grown in Knop solution and temperature was 20 ± 2 °C. Detached leaves were exposed to high salt stress (0.1–0.5 M NaCl) for 1 h in dark and Chl a fluorescence induction kinetics was measured. Various parameters like Fv/Fm, ABS/RC, ETo/TRo, performance index and area over the florescence curve were measured and the energy pipeline model was deduced in response to salt stress. Our results show that the damage caused due to high salt stress is more prominent at the donor side rather than the acceptor side of PS II. Moreover the effects of high salt stress are largely reversible, as the acceptor side damage is completely recovered (~100%) while the recovery of the donor side is less than 85%. Based on our results we suggest that in response to high salt stress, the donor side of PS II is affected more as compared to the acceptor side of PS II.  相似文献   

2.
Tolerance of photosystem 2 (PS2) to high temperature in apple (Malus domestica Borkh. cv. Cortland) leaves and peel was investigated by chlorophyll a fluorescence (OJIP) transient after exposure to 25 (control), 40, 42, 44, and 46 °C in the dark for 30 min. The positive L-step was more pronounced in a peel than in leaves when exposed to 44 °C. Heat-induced K-step became less pronounced in leaves than in peel when exposed to 42 °C or higher temperature. Leaves had negative L-and K-steps relative to the peel. The decrease of oxygen-evolving complex (OEC) by heat stress was higher in the peel than in the leaves. OJIP transient from the 46 °C treated peel could not reach the maximum fluorescence (Fm). The striking thermoeffect was the big decrease in the relative variable fluorescence at 30 ms (VI), especially in the leaves. Compared with the peel, the leaves had less decreased maximum PS2 quantum efficiency (Fv/Fm), photochemical rate constant (KP), Fm and performance index (PI) on absorption basis (PIabs) and less increased minimum fluorescence (F0) and non-photochemical rate constant (KN), but more increased reduction of end acceptors at PS1 electron acceptor side per cross section (RE0/CS0) and per reaction center (RE0/RC0), quantum yield of electron transport from QA to the end acceptors (ϕ R0) and total PI (PIabs,total) when exposed to 44 °C. In conclusion, PS2 is more thermally labile than PS1. The reduction of PS2 activity by heat stress primarily results from an inactivation of OEC. PS2 was more tolerant to high temperature in the leaves than in the peel.  相似文献   

3.
Climate change is expected to result in an increase in the frequency and magnitude of extreme weather events. Alhagi sparsifolia is an important factor for wind prevention and sand fixation in the forelands of the Taklamakan Desert. The effects of high temperature on desert plants remain widely unknown. In this work, chlorophyll a fluorescence induction kinetics were investigated at different time stresses of 5, 20, 40, and 60 min at temperature gradients of 38–44 °C at 2 °C intervals. A pronounced K-step was found, and the values of the maximum quantum yield for primary photochemistry, the quantum yield of electron transport, the density of reaction centers and the performance index on absorption basis were lowest after 60 min at 44 °C, thus indicating that the oxygen-evolving complex was damaged, the inactivated reaction centers increased, and the activity of the photosystem II (PSII) reaction center in leaves was seriously limited. Therefore, we suggest that under normal temperature (below 42 °C), the PSII of A. sparsifolia would be unaffected. When such temperature is maintained for 40 min, the activity of PSII would be limited, and when retained for 60 min, PSII may be severely damaged.  相似文献   

4.
Leaflets of Sphagnum capillifolium were exposed to temperatures from ?5°C to +60°C under controlled conditions while mounted on a microscope stage. The resultant cytological response to these temperature treatments was successfully monitored using a light and fluorescence microscope. In addition to the observable cytological changes during freezing cytorrhysis and heat exposure on the leaflets, the concomitant critical temperature thresholds for inactivation of photosystem II (PS II) were studied using a micro fibre optic and a chlorophyll fluorometer mounted to the microscope stage. Chlorophyllous cells of S. capillifolium showed extended freezing cytorrhysis immediately after ice nucleation at ?1.1°C in the water in which the leaflets were submersed during the measurement. The occurrence of freezing cytorrhysis, which was visually manifested by cell shrinkage, was highly dynamic and was completed within 2 s. A total reduction of the mean projected diameter of the chloroplast containing area during freezing cytorrhysis from 8.9 to 3.8 μm indicates a cell volume reduction of approximately ?82%. Simultaneous measurement of chlorophyll fluorescence of PS II was possible even through the frozen water in which the leaf samples were submersed. Freezing cytorrhysis was accompanied by a sudden rise of basic chlorophyll fluorescence. The critical freezing temperature threshold of PS II was identical to the ice nucleation temperature (?1.1°C). This is significantly above the temperature threshold at which frost damage to S. capillifolium leaflets occurs (?16.1°C; LT50) which is higher than observed in most higher plants from the European Alps during summer. High temperature thresholds of PS II were 44.5°C which is significantly below the heat tolerance of chlorophyllous cells (49.9°C; LT50). It is demonstrated that light and fluorescence microscopic techniques combined with simultaneous chlorophyll fluorescence measurements may act as a useful tool to study heat, low temperature, and ice-encasement effects on the cellular structure and primary photosynthetic processes of intact leaf tissues.  相似文献   

5.
茄子光系统Ⅱ的热胁迫特性   总被引:5,自引:8,他引:5  
以耐热性较弱的黑贝一号圆茄和耐热性较强的黑贝二号圆茄为试材,热胁迫处理后采用植物效率仪PEA进行快速叶绿素荧光诱导曲线及其参数测定.结果表明:当温度高于40 ℃,PSⅡ结构受热胁迫影响较为敏感,表现为初始荧光Fo缓慢上升;PSⅡ原初光化学效率Fv/Fm和ΔF/Fm′大幅度下降,且黑贝二号Fv/Fm的半衰时间T50和ΔF/Fm′的半衰温度t50分别大于黑贝一号.较高的热胁迫剂量(48℃处理5 min或44℃处理20~30min)下,快速荧光诱导动力学曲线呈现OKJIP型,在700μs处出现与放氧复合体失活有关的K相.黑贝一号在44 ℃下处理20 min才有K相出现,黑贝二号则晚10 min出现.与35℃相比,在48℃,特别是在52℃的较高剂量热胁迫下,Strasser能量流动模型参数中的DIo/RC有大幅度地增加,体现了热耗散对PSⅡ的较强保护能力.随着热胁迫温度的升高和热胁迫时间的延长,两品种的无活性中心Fvi/Fv显著增加.  相似文献   

6.
The effect of high salt stress on PS II heterogeneity was investigated in wheat (Triticum aestivum) leaves. On the basis of antenna size, PS II has been classified into three forms, i.e., α, β, and γ centers while on the basis of electron transport properties of the reducing side of the reaction centers, two distinct forms of PS II have been suggested, i.e., QB reducing centers and QB non-reducing centers. The chlorophyll a (Chl a) fluorescence transients, which can quantify PS II behavior, were recorded using PEA to derive OJIP in vivo with high time resolution and further analyzed according to JIP test. Our results showed that with an increase in the salt concentration during growth, the number of QB non-reducing centers increased. In antenna size heterogeneity the number of β and γ centers increased while the number of α centers decreased. A change in the energetic connectivity between the PS II units was also observed. Recovery studies showed that antenna heterogeneity was completely recovered from damage at 0.5 M NaCl concentration and partially recovered at 1 M NaCl concentration while reducing side heterogeneity showed no recovery at all after 0.5 M onwards.  相似文献   

7.
The effects of temperature (25–45 °C) and pH (7.5–5.5) on photosystem (PS) 2 was studied in spinach (Spinacia oleracea L.) thylakoid membranes using chlorophyll a fluorescence induction kinetics. In high temperature and low pH treated thylakoid membranes a decline in the variable to maximum fluorescence ratio (Fv/Fm) and PS 2 electron transport rate were observed. More stacking in thylakoid membranes, studied by digitonin fractionation method, was observed at low pH, while the degree of unstacking increased under high temperature conditions. We conclude that the change in pH does not significantly affect the donor/acceptor side of PS 2 while high temperature does. Fluorescence emission spectra at 77 K indicated that low pH is associated with energy redistribution between the two photosystems while high temperature induced changes do not involve energy re-distribution. We suggest that both, high temperature and low pH, show an inhibitory effect on PS 2 but their mechanisms of action are different.  相似文献   

8.
Arthrospira (Spirulina) is widely used as human health food and animal feed. In cultures grown outdoors in open ponds, Arthrospira cells are subjected to various environmental stresses, such as high temperature. A better understanding of the effects of high temperature on photosynthesis may help optimize the productivity of Arthrospira cultures. In this study, the effects of heat stress on photosynthetic rate, chlorophyll a fluorescence transients, and photosystem (PS) II, PSI activities in a marine cyanobacterium Arthrospira sp. were examined. Arthrospira cells grown at 25 °C were treated for 30 min at 25 (control), 30, 34, 37, or 40 °C in the dark. Heat stress (30–37 °C) enhanced net photosynthetic O2 evolution rate. Heat stress caused over-reduction PSII acceptor side, damage of donor side of PSII, decrease in the energetic connectivity of PSII units, and decrease in the performance of PSII. When the temperature changed from 25 to 37 °C, PSII activity decreased, while PSI activity increased, the enhancement of photosynthetic O2 evolution was synchronized with the increase in PSI activity. When temperature was further increased to 40 °C, it induced a decrease in photosynthetic O2 evolution rate and a more severe decrease in PSII activity, but an increase in PSI activity. These results suggest that PSI activity was the decisive factor determining the change of photosynthetic O2 evolution when Arthrospira was exposed to a temperature from 25 to 37 °C, but then, PSII activity became the decisive factor adjusting the change of photosynthetic O2 evolution when the temperature was increased to 40 °C.  相似文献   

9.
The effect of variable temperatures (10–50 °C) on photosynthesis and chlorophyll fluorescence in Conocarpus lancifolius was evaluated. Additionally, the ability of the species to synthesize heat-shock proteins (HSPs) to protect against high temperatures, and malondialdehyde (MDA) as a by-product of lipid peroxidation was investigated. Plants at 10 °C showed virtually no measurable growth, leaf discoloration and a few brown lesions, while high temperatures (40 and 50 °C) promoted growth and lateral branch development. Chlorophyll content index, photochemical efficiency (F v/F m) of PS II, electron transport rate and photosynthetic rate declined with decreasing temperature but increased significantly at higher temperatures. Heat-shock protein (HSP 70 kDa) was produced at temperatures 30–50 °C and an additional 90 kDa protein was also produced at 50 °C. Increase in the efficiency of excitation energy captured by the open PS II reaction centers (F v/F m) increased linearly (P ≤ 0.05) with the accumulation of HSP 70 at higher temperatures. However, at low temperatures the concentration of MDA increased significantly, indicating lipid peroxidation due to oxidative stress. The production and accumulation of HSP 70 and 90 kDa coupled with increased electron transport rate and photochemical efficiency can be used to assess survival, growth capacity and to some extent the tolerance of C. lancifolius to elevated temperatures.  相似文献   

10.
Three trypsins (TRY-ES) were purified from Antarctic krill (Euphausia superba) by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography, with relative molecular mass of 28.7, 28.8 and 29.2 kDa respectively. The TRY-ES was inhibited by specific trypsin inhibitors (benzamidine, STI, CHOM and TLCK), with optimum temperature at 40 (Trypsin I), 45 (Trypsin II) and 40 °C (Trypsin III) repetitively. The TRY-ES was stabled between 5 and 40 °C, which was consistent with the red shift in fluorescence intensity peak at 40 °C (Trypsin I) and 45 °C (Trypsin II and Trypsin III) and blue shift at 40 °C (Trypsin II and Trypsin III). The K cat/K m values of the TRY-ES was 14.28, 9.46 and 5.93 mM?1s?1 respectively, 1.1–10.2 folds higher than trypsins from other crustacean and mammal, which was supported by the differences in thermodynamics parameters, the free energy, enthalpy, and entropy of benzamidine and the TRY-ES system.  相似文献   

11.
Tomato Micro-Tom’ plants were transformed for high or low expression of the mitochondrial small “heat shock” protein (HSP) (MT-sHSP23.6) to evaluate their response to high temperature. The plants were raised for 59 days under a controlled temperature, photoperiod and photon flow density and then subjected to heat stress for 24 h at 37 °C, followed by a recovery period under normal conditions (21 ± 2 °C). The cycle was repeated. The chlorophyll a fluorescence intensity was measured, and the parameters of the JIP-test were calculated. The gas exchange was also evaluated. The JIP-test showed significantly different responses of the genotypes to heat stress. The parameters of photosystem I activity and the net assimilation of CO2 increased during the first stress cycle in genotypes with a high expression of MT-sHSP23.6 and in non-transformed plants; however, the net assimilation of CO2 decreased in genotypes with a low expression of MT-sHSP23.6. The data suggest that MT-sHSP23.6 participates in the heat tolerance mechanism, considering that the suppression of this protein resulted in greater physiological damage during heat stress.  相似文献   

12.
《BBA》1985,807(2):118-126
The influence of light quality and temperature on the distribution of the absorbed quanta between Photosystem I (PS I) and Photosystem II (PS II) in spinach leaves has been studied from the characteristics of chlorophyll fluorescence at 77 K. Leaves were preilluminated at different temperatures with either PS I light (to establish State 1) or with PS II light (to establish State 2), then cooled to 77 K and measured for fluorescence. In State 1, energy distribution appeared to be unaffected by temperature. A transition to State 2 resulted in an increase in PS I fluorescence and a decrease in the PS II fluorescence, indicating that a larger fraction of energy becomes redistributed to PS I. However, the extent of this redistribution varied: it was only small at 5°C to 20°C, but it largely increased at temperatures exceeding 20°C. This variation in the extent was related to a change in the mechanism of the state transition: at 15°C only the ‘initial’ distribution of energy was affected, while at 35°C an additional increase in the spill-over constant, kT (II → I), was included. It is assumed that under physiological conditions kT (II → I) is under the control of temperature rather than of light quality, whereby in leaves adapted to high physiological temperatures, the probability of energy spill-over from closed PS II centres to PS I is enhanced. In darkened leaves, the spill-over constant has been manipulated by preincubation at different temperatures. Then, the light-induced ‘energization’ of thylakoid membranes has been tested by measuring the light-induced electrochromic absorbance change at 515 nm (and light-induced light-scattering changes) in these leaves. The flash-induced 515 nm signal as well as the initial peak during a 1 s illumination were not affected by energy distribution. However, the amplitude of the pseudo-steady-state signal (as established during 1 s illumination) was considerably enhanced in leaves in which a larger fraction of the absorbed energy is distributed to PS I at the expense of PS II excitation. The results have been interpreted in such a way that an increase in energy spill-over from PS II to PS I favours a cyclic electron transport around PS I. It is discussed that changes in energy distribution (via spill-over) may serve to maintain a suitable balance between non-cyclic and cyclic electron transport in vivo.  相似文献   

13.
The purpose of this study was to investigate the effects of arbuscular mycorrhizal (AM) symbiosis on gas exchange, chlorophyll fluorescence, pigment concentration and water status of maize plants in pot culture under high temperature stress. Zea mays L. genotype Zhengdan 958 were cultivated in soil at 26/22°C for 6 weeks, and later subjected to 25, 35 and 40°C for 1 week. The plants inoculated with the AM fungus Glomus etunicatum were compared with the non-inoculated plants. The results showed that high temperature stress decreased the biomass of the maize plants. AM symbiosis markedly enhanced the net photosynthetic rate, stomatal conductance and transpiration rate in the maize leaves. Compared with the non-mycorrhizal plants, mycorrhizal plants had lower intercellular CO2 concentration under 40°C stress. The maximal fluorescence, maximum quantum efficiency of PSII photochemistry and potential photochemical efficiency of mycorrhizal plants were significantly higher than corresponding non-mycorrhizal plants under high temperature stress. AM-inoculated plants had higher concentrations of chlorophyll a, chlorophyll b and carotenoid than non-inoculated plants. Furthermore, AM colonization increased water use efficiency, water holding capacity and relative water content. In conclusion, maize roots inoculated with AM fungus may protect the plants against high temperature stress by improving photosynthesis and water status.  相似文献   

14.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   

15.
Increasing energy costs force glasshouse growers to switch to energy saving strategies. In the temperature integration approach, considerable daily temperature variations are allowed, which not only have an important influence on plant growth but also on the development rate of arthropods in the crop. Therefore, we examined the influence of two constant temperature regimes (15 °C/15 °C and 20 °C/20 °C) and one alternating temperature regime (20 °C/5 °C, with an average of 15 °C) on life table parameters of Phytoseiulus persimilis and Neoseiulus californicus and their target pest, the two-spotted spider mite Tetranychus urticae at a 16:8 (L:D) h photoperiod and 65 ± 5 % RH. For females of both predatory mites the alternating temperature regime resulted in a 25–30 % shorter developmental time as compared to the corresponding mean constant temperature regime of 15 °C/15 °C. The immature development of female spider mites was prolonged for 7 days at 15 °C/15 °C as compared to 20 °C/5 °C. With a daytime temperature of 20 °C, no differences in lifetime fecundity were observed between a nighttime temperature of 20 and 5 °C for P. persimilis and T. urticae. The two latter species did show a higher lifetime fecundity at 20 °C/5 °C than at 15 °C/15 °C, and their daily fecundity at the alternating regime was about 30 % higher than at the corresponding mean constant temperature. P. persimilis and T. urticae showed no differences in sex ratio between the three temperature regimes, whereas the proportion of N. californicus females at 15 °C/15 °C (54.2 %) was significantly lower than that at 20 °C/5 °C (69.4 %) and 20 °C/20 °C (67.2 %). Intrinsic rates of increase were higher at the alternating temperature than at the corresponding mean constant temperature for both pest and predators. Our results indicate that thermal responses of the studied phytoseiid predators to alternating temperature regimes used in energy saving strategies in glasshouse crops may have consequences for their efficacy in biological control programs.  相似文献   

16.
Pseudomonas putida (NBAII-RPF9) was identified as an abiotic stress tolerant bacterium capable of growing at 45 °C as well as in 1 M NaCl. The proteins expressed by this bacterium when subjected to these two stresses were analyzed by 2D gel and MALDI-TOF/MS. Two parameters viz., heat/saline shock (20 min at 45 °C/1 M solid NaCl added at mid log phase and incubated for 1 h) and heat/saline tolerance (24 h growth at 45 °C/in 1 M NaCl) were studied. Under heat shock 13 upregulated proteins and 1 downregulated protein were identified and under tolerance 6 upregulated proteins were identified. GroES and GroEL proteins were expressed under both tolerance and shock. Under saline shock 11 upregulated proteins were identified whereas under saline tolerance 6 upregulated proteins were identified and all these proteins had pI between 3 and 10 with molecular weights ranging from 14.3 to 97 kDa. Aspartate carbamoyltransferase was common under both the saline conditions studied. The analysis revealed involvement of heat stress responsive molecular chaperones and membrane proteins during heat stress. During salt stress, proteins involved in metabolic processes were found to be upregulated to favor growth and adaptation of the bacterium. Heat shock chaperones viz., DnaK and DnaJ were expressed under both saline and heat stress. This is the first report of protein profile obtained from a single bacterium under saline and heat stress and the studies reveal the complex mechanisms adapted by the organism to survive under high temperature or saline conditions.  相似文献   

17.
Heat stress affects a broad spectrum of cellular components and metabolism. The objectives of this study were to investigate the behavior of Photosystem II (PSII) in tall fescue (Festuca arundinacea Schreb) with various thermotolerance capacities and to broaden our comprehension about the relationship between thermotolerance and PSII function. Heat-tolerant and heat-sensitive accessions were incubated at 24 °C (control) and 46 °C (heat stress) for 5 h. The fluorescence transient curves (OJIP curves), slow Chl fluorescence kinetic, and light response curve were employed to study the behavior of PSII subjected to heat stress. After heat stress, performance index for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors (PITotal), the value of electrons produced per photon (a), and the maximal rate of electron transport (ETRmax) of heat-tolerant accessions were lower than those of heat-sensitive accessions. Relatively lower reactive oxygen species (ROS) contents were detected in heat-tolerant accessions. Simultaneously, there was a significant decline in the quantum yield of photochemical energy conversion in PS II (Y(II)), probability that a PSII Chl molecule functions as reaction center (γRC), and the increase of quantum yield for non-regulated non-photochemical energy loss (Y(NO)) in heat-tolerant accessions. Moreover, a significant inverse correlation between heat tolerance indexes (HTI) and Y(II) was observed. Therefore, maintaining a lower photochemical activity in heat-tolerant accessions could be a crucial strategy to improve their thermotolerance. This finding could be attributed to the structural difference in the reaction center, and for heat-tolerant accessions, it could simultaneously limit energy input into linear electron transport, and dissipate more energy through non-regulated non-photochemical energy loss processes.  相似文献   

18.
A recently reported stable and efficient EBPR system at high temperatures around 30 °C has led to characterization of kinetic and stoichiometric parameters of the Activated Sludge Model no. 2d (ASM2d). Firstly, suitable model parameters were selected by identifiability analysis. Next, the model was calibrated and validated. ASM2d was found to represent the processes well at 28 and 32 °C except in polyhyroxyalkanoate (PHA) accumulation of the latter. The values of the kinetic parameters for PHA storage (q PHA), polyphosphate storage (q PP) and growth (μ PAO) of polyphosphate-accumulating organisms (PAOs) at 28 and 32 °C were found to be much higher than those reported by previous studies. Besides, the value of the stoichiometric parameter for the requirement of polyphosphate for PHA storage (Y PO4) was found to decrease as temperature rose from 28 to 32 °C. Values of two other stoichiometric parameters, i.e. the growth yield of heterotrophic organisms (Y H) and PAOs (Y PAO), were high at both temperatures. These calibrated parameters imply that the extremely active PAOs of the study were able to store PHA, store polyphosphate and even utilize PHA for cell growth. Besides, the parameters do not follow the Arrhenius correlation due to the previously reported unique microbial clade at 28 and 32 °C, which actively performs EBPR at high temperatures.  相似文献   

19.
In this study body temperature (BT, °C) and panting score (PS, 0–4.5; where 0?=?no panting/no stress and 4.5?=?catastrophic stress) data were obtained from 30 Angus steers housed outside over 120 days Steers were implanted with a BT transmitter on day ?31, BT was recorded at 30-min intervals to a data logger and downloaded each day to a database. The cattle were housed in ten outdoor un-shaded pens with an earthen floor, eight of which had a pen floor area of 144 m2 (three transmitter steers plus five non-transmitter steers; 18 m2/steer) and two had an area of 168 m2 (three transmitter steers and six non-transmitter steers; 18.7 m2/steer). Only data from the transmitter steers were used in this study. The PS of the steers was obtained daily (± 15 min) at 0600 hours (AM), 1200 hours (MD) and 1600 hours (PM). At the same times climate variables (ambient temperature, black globe temperature, solar radiation, relative humidity, wind speed and rainfall) were obtained from an on-site weather station. PS observations were made from outside the pens so as not to influence cattle responses. The two closest BT values to the time when PS was obtained were downloaded retrospectively from a logger and averaged. A total of 8,352 observations were used to generate second order polynomial response curves: (AM) y?=?39.08?+?0.009?x +?0.137x 2 (R 2?=?0.94; P? y?=?39.09?+?0.914x ? 0.080x 2 (R 2?=?0.89; P? y?=?39.52?+?0.790x ? 0.068x 2 (R 2?=?0.83; P?x?PS. These data suggest that PS is a good indicator of body temperature. The BT at MD corresponded to slightly lower PS compared with PM, e.g., for PS 1; BT at MD?=?39.1?±?0.05 °C whereas BT at PM?=?39.5?±?0.05 °C. However during AM, BT was lower (P?相似文献   

20.
To analyze the physiological mechanisms underlying the increased tolerance to drought and high temperature stress combination by overproduction of glycinebetaine (GB) in wheat, a transgenic wheat line T6 and its wild-type (WT) Shi4185 were used. The transgenic line was generated by introducing a gene encoding betaine aldehyde dehydrogenase (BADH) into a wheat line Shi4185. The gene was cloned from Garden Orache (Atriplex hortensis L.). Wheat plants were exposed to drought (withholding irrigation), high temperature stress (40 °C), and their combination at the flowering stage. Analyses of oxygen-evolving activity and photosystem II (PSII) photochemistry, modulated chlorophyll fluorescence, rapid fluorescence induction kinetics, and the polyphasic fluorescence transients (OJIP) were used to evaluate PSII photochemistry in wheat plants. The results suggest that the PSII in transgenic plants showed higher resistance than that in wild-type plants under the stresses studied here, this increased tolerance was associated with an improvement in stability of the oxygen-evolving complex and the reaction center of PSII; streptomycin treatment can impair the protective effect of overaccumulated GB on PSII. The overaccumulated GB may protect the PSII complex from damage through accelerating D1 protein turnover to alleviate photodamage. The results also suggest that the PSII under combined high temperature and drought stress shows higher tolerance than under high temperature stress alone in both transgenic and wild-type plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号