首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomal protein L5 is a shuttling protein that, in Xenopus oocytes, is involved in the nucleocytoplasmic transport of 5S rRNA. As demonstrated earlier, L5 contains three independent nuclear import signals (NLSs), which function in oocytes as well as in somatic cells. Upon physical separation, these NLSs differ in respect to their capacity to bind to nuclear import factors in vitro and to mediate the nuclear import of a heterologous RNP in vivo. As reported in this communication, analysis of the in vitro nuclear import activity of these three NLSs reveals that they also differ in respect to their requirements for cytosolic import factors and Ran. Nuclear import mediated by the N-terminal and the central NLS depends on cytosolic import factor(s) and Ran, whereas import via the C-terminal NLS occurs independently from these factors. Thus, the presence of multiple NLSs in ribosomal protein L5 appears to allow for efficient nuclear transport via utilisation of multiple, mechanistically different import pathways.  相似文献   

2.
KPNB1和Ran蛋白共同介导新城疫病毒基质蛋白的入核转运   总被引:1,自引:1,他引:1  
【目的】鉴定与新城疫病毒(Newcastle disease virus,NDV)基质蛋白(matrix protein,M)入核相关的细胞蛋白,以阐明NDV M蛋白细胞核定位的分子机制。【方法】从鸡胚成纤维细胞中分别克隆核转运受体蛋白KPNA1–KPNA6和KPNB1基因,将其构建到真核表达载体,并与表达NDV M蛋白的重组真核表达载体分别共转染HEK-293T细胞,通过免疫共沉淀方法鉴定与NDV M蛋白相互作用的核转运受体蛋白。另外,将M蛋白与Ran蛋白突变体或与M蛋白互作的核转运受体蛋白缺失体分别共表达,通过荧光共定位确定M蛋白入核转运相关的细胞蛋白。【结果】构建的重组真核表达载体在HEK-293T细胞中能够正确表达;通过间接免疫荧光观察发现,重组蛋白中除Myc-KPNA2蛋白定位在细胞质外,其它核转运受体蛋白均与M蛋白表现出相同的细胞核定位。免疫共沉淀试验结果表明,M蛋白与KPNA1蛋白和KPNB1蛋白均存在相互作用。进一步通过荧光共定位观察发现,M蛋白与KPNA1蛋白缺失体(DN-KPNA1)共表达不改变M蛋白的细胞核定位,而与KPNB1蛋白缺失体(DN-KPNB1)共表达后导致M蛋白变为细胞质定位,说明M蛋白入核转运需要KPNB1蛋白的参与。另外,将M蛋白与Ran蛋白突变体Ran-Q69L共表达,荧光观察发现M蛋白同样由细胞核定位变为细胞质定位,说明M蛋白入核转运还需要Ran蛋白的辅助。【结论】KPNB1和Ran蛋白共同介导NDV M蛋白的入核转运,其过程是KPNB1蛋白首先和M蛋白发生相互作用并形成复合物,然后通过Ran蛋白的辅助作用完成入核转运。  相似文献   

3.
We have generated fusion proteins between the subunits of CK2 and GFP and characterized their behaviour in living cells. The expressed fusion proteins were functional and interacted with endogenous CK2. Imaging of NIH3T3 cells expressing low level of GFP-CK2 or GFP-CK2 showed that both proteins were mostly nuclear in interphase. Both CK2 subunits contain nuclear localization domains that target them independently to the nucleus. Once in the nucleus, both subunits diffused rapidly in the nucleoplasm. In mitotic cells, CK2 subunits were dispersed throughout the cytoplasm and were not associated to chromatin. Our data are compatible with the idea that each subunit can translocate individually to the nucleus to interact with each other or with important cellular partners. Understanding the molecular mechanisms which regulate the dynamic localization of CK2 subunits will be of central importance.  相似文献   

4.
Mammalian serine and arginine-rich (SR) proteins play important roles in both constitutive and regulated splicing, and SR protein-specific kinases (SRPKs) are conserved from humans to yeast. Here, we demonstrate a novel function of the single conserved SR protein kinase Sky1p in nuclear import in budding yeast. The yeast SR-like protein Npl3p is known to enter the nucleus through a composite nuclear localization signal (NLS) consisting of a repetitive arginine- glycine-glycine (RGG) motif and a nonrepetitive sequence. We found that the latter is the site for phosphorylation by Sky1p and that this phosphorylation regulates nuclear import of Npl3p by modulating the interaction of the RGG motif with its nuclear import receptor Mtr10p. The RGG motif is also methylated on arginine residues, but methylation does not affect the Npl3p-Mtr10p interaction in vitro. Remarkably, arginine methylation interferes with Sky1p-mediated phosphorylation, thereby indirectly influencing the Npl3p-Mtr10p interaction in vivo and negatively regulating nuclear import of Npl3p. These results suggest that nuclear import of Npl3p is coordinately influenced by methylation and phosphorylation in budding yeast, which may represent conserved components in the dynamic regulation of RNA processing in higher eukaryotic cells.  相似文献   

5.
Centromere protein F (CENP-F) is a component of the kinetochore and a regulator of cell cycle progression. CENP-F recruits the dynein transport machinery and orchestrates several cell cycle-specific transport events, including transport of the nucleus, mitochondria and chromosomes. A key regulatory step for several of these functions is likely the G2 phase-specific export of CENP-F from the nucleus to the cytosol, where the cytoplasmic dynein transport machinery resides; however, the molecular mechanism of this process is elusive. Here, we have identified 3 phosphorylation sites within the bipartite classical nuclear localization signal (cNLS) of CENP-F. These sites are specific for cyclin-dependent kinase 1 (Cdk1), which is active in G2 phase. Phosphomimetic mutations of these residues strongly diminish the interaction of the CENP-F cNLS with its nuclear transport receptor karyopherin α. These mutations also diminish nuclear localization of the CENP-F cNLS in cells. Notably, the cNLS is phosphorylated in the ?1 position, which is important to orient the adjacent major motif for binding into its pocket on karyopherin α. We propose that localization of CENP-F is regulated by a cNLS, and a nuclear export pathway, resulting in nuclear localization during most of interphase. In G2 phase, the cNLS is weakened by phosphorylation through Cdk1, likely resulting in nuclear export of CENP-F via the still active nuclear export pathway. Once CENP-F resides in the cytosol, it can engage in pathways that are important for cell cycle progression, kinetochore assembly and the faithful segregation of chromosomes into daughter cells.  相似文献   

6.
《Developmental cell》2022,57(20):2397-2411.e9
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   

7.
Lower micromolar concentrations of peroxovanadium compound potassium bisperoxo(1,10-phenanthroline)oxovanadate (V) [bpV (phen)] stimulate RINm5F cell metabolic activity. 1 and 3 mol/L bpV (phen) induces strong and sustained activation of extracellular signal-regulated kinase (ERK). However, it seems that bpV (phen) does not effect c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. In addition, bpV (phen) induces mitogen-activated protein kinase phosphatase-1 (MKP-1) expression. We found that ERK activation could be completely abolished if RINm5F cells were incubated with both bpV (phen) and PD 98059, a specific inhibitor of upstream ERK kinase MEK1. On the other hand, this combined treatment up-regulated activation of stress kinases, JNK and p38 MAPK, significantly suppressed MKP-1 expression and induced cell death. Thus, our results suggest that the mechanism underlying bpV (phen) survival-enhancing effect could be associated with induced ERK activation and MKP-1 expression.  相似文献   

8.
Protein kinase CK2 is a ubiquitous protein serine/threonine kinase that is involved in cell growth and proliferation as well as suppression of apoptosis. Several studies have suggested that the kinase plays a role in cell cycle progression; however, changes in enzyme activity during phases of cell cycle have not been detected. Nuclear matrix is a key locus for CK2 signaling in the nucleus. We therefore examined CK2 signaling to the nuclear matrix in distinct phases of cell cycle by employing synchronized ALVA-41 prostate cancer cells. Removal of serum from the culture medium resulted in G0/G1 arrest, and a reduction in the nuclear matrix-associated CK2 activity which was rapidly reversed on addition of serum. Arresting the cells in G(0)/G(1) phase with hydroxyurea and subsequent release to S phase by serum gave similar results. Cells arrested in the G(2)/M phase by treatment with nocodazole demonstrated an extensive reduction in the nuclear matrix-associated CK2 which was reversed rapidly on addition of serum. Changes in the immunoreactive CK2 protein were concordant with the activity data reflecting a dynamic trafficking of the kinase in distinct phases of cell cycle. Under the same conditions, CK2 activity in total cellular lysate remained essentially unaltered. These results provide the first direct evidence of discrete modulations of CK2 in the nuclear matrix during the cell cycle progression. Inducible overexpression of CK2 in CHO cells yielded only a modest increase in CK2 activity even though a significant increase in expression was apparent at the level of CK2 alpha-specific message. Stably transfected ALVA-41 cells, however, did not show a significant change in CK2 levels despite increased expression at the message level. Not surprisingly, both types of the stably transfected cells failed to show any alteration in cell cycle progression. Distribution of the CK2 activity in the cytosolic versus nuclear matrix fractions in normal cells appears to be different from that in the cancer cells such that the ratio of nuclear matrix to cytosolic activity is much higher in the latter. Considering that nuclear matrix is central to several nuclear functions, this pattern of intracellular distribution of CK2 may have implications for its role in the oncogenic process. Published 2003 Wiley-Liss, Inc.  相似文献   

9.
The majority of chloroplast proteins is nuclear-encoded and therefore synthesized on cytosolic ribosomes. In order to enter the chloroplast, these proteins have to cross the double-membrane surrounding the organelle. This is achieved by means of two hetero-oligomeric protein complexes in the outer and inner envelope, the Toc and Tic translocon. The process of chloroplast import is highly regulated on both sides of the envelope membranes. Our studies indicate the existence of an undescribed mode of control for this process so far, at the same time providing further evidence that the chloroplast is integrated into the calcium-signalling network of the cell. In pea chloroplasts, the calmodulin inhibitor Ophiobolin A as well as the calcium ionophores A23187 and Ionomycin affect the translocation of those chloroplast proteins that are imported with an N-terminal cleavable presequence. Import of these proteins is inhibited in a concentration-dependent manner. Addition of external calmodulin or calcium can counter the effect of these inhibitors. Translocation of chloroplast proteins that do not possess a cleavable transit peptide, that is outer envelope proteins or the inner envelope protein Tic32, is not affected. These results suggest that the import of a certain subset of chloroplast proteins is regulated by calcium. Our studies furthermore indicate that this regulation occurs downstream of the Toc translocon either within the intermembrane space or at the inner envelope translocon. A potential promoter of the calcium regulation is calmodulin, a protein well known as part of the plant's calcium signalling system.  相似文献   

10.
Previously, we have identified and characterized nuclear AKAP95 from man which targets cyclic AMP (cAMP)-dependent protein kinase (PKA)-type II to the condensed chromatin/spindle region at mitosis. Here we report the cloning of a novel nuclear protein with an apparent molecular mass of 95 kDa that is similar to AKAP95 and is designated HA95 (homologous to AKAP95). HA95 cDNA sequence encodes a protein of 646 amino acids that shows 61% homology to the deduced amino acid sequence of AKAP95. The HA95 gene is located on chromosome 19p13.1 immediately upstream of the AKAP95 gene. Both HA95 and AKAP95 genes contain 14 exons encoding similar regions of the respective proteins, indicating a previous gene duplication event as the origin of the two tandem genes. Despite their apparent similarity, HA95 does not bind RII in vitro. HA95 contains a putative nuclear localization signal in its N-terminal domain. It is localized exclusively into the nucleus as demonstrated in cells transfected with HA95 fused to either green fluorescence protein or the c-myc epitope. In the nucleus, the HA95 protein is found as complexes directly associated with each other or indirectly associated via other nuclear proteins. In interphase, HA95 is co-localized with AKAP95, but the two proteins are not biochemically associated. At metaphase, both proteins co-localize with condensed chromosomes. The similarity in sequence and localization of HA95 and AKAP95 suggests that the two molecules constitute a novel family of nuclear proteins that may exhibit related functions.  相似文献   

11.
Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin alpha/beta and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin beta and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.  相似文献   

12.
We report here that importin alpha accumulates reversibly in the nucleus in response to cellular stresses including UV irradiation, oxidative stress, and heat shock. The nuclear accumulation of importin alpha appears to be triggered by a collapse in the Ran gradient, resulting in the suppression of the nuclear export of importin alpha. In addition, nuclear retention and the importin beta/Ran-independent import of importin alpha also facilitate its rapid nuclear accumulation. The findings herein show that the classical nuclear import pathway is down-regulated via the removal of importin alpha from the cytoplasm in response to stress. Moreover, whereas the nuclear accumulation of heat shock cognate 70 is more sensitive to heat shock than the other stresses, importin alpha is able to accumulate in the nucleus at all the stress conditions tested. These findings suggest that the stress-induced nuclear accumulation of importin alpha can be involved in a common physiological response to various stress conditions.  相似文献   

13.
Karyopherins and nuclear import   总被引:21,自引:0,他引:21  
Proteins of the karyopherin alpha and karyopherin beta families play a central role in nucleocytoplasmic transport. Recently, crystal structures of karyopherin alpha and its complexes with nuclear localization signal peptides, a karyopherin beta2-Ran complex and complexes of full-length and fragments of karyopherin beta1 with import substrates, Ran and nucleoporins have been solved. These karyopherin structures provide valuable insights into understanding the molecular mechanism of nuclear import, especially substrate recognition, substrate release by GTPase and interactions with the nuclear pore complex.  相似文献   

14.
The binding affinity between a nuclear localization signal (NLS) and its import receptor is closely related to corresponding nuclear import activity. PTM‐based modulation of the NLS binding affinity to the import receptor is one of the most understood mechanisms to regulate nuclear import of proteins. However, identification of such regulation mechanisms is challenging due to the difficulty of assessing the impact of PTM on corresponding nuclear import activities. In this study we proposed NIpredict, an effective algorithm to predict nuclear import activity given its NLS, in which molecular interaction energy components (MIECs) were used to characterize the NLS‐import receptor interaction, and the support vector regression machine (SVR) was used to learn the relationship between the characterized NLS‐import receptor interaction and the corresponding nuclear import activity. Our experiments showed that nuclear import activity change due to NLS change could be accurately predicted by the NIpredict algorithm. Based on NIpredict, we developed a systematic framework to identify potential PTM‐based nuclear import regulations for human and yeast nuclear proteins. Application of this approach has identified the potential nuclear import regulation mechanisms by phosphorylation of two nuclear proteins including SF1 and ORC6. Proteins 2014; 82:2783–2796. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Ceramide pathways modulate ethanol-induced cell death in astrocytes   总被引:4,自引:0,他引:4  
We showed previously that alcohol exposure during in vivo brain development induced astroglial damage and caused cell death. Because ceramide modulates a number of biochemical and cellular responses to stress, including apoptosis, we now investigate whether ethanol-induced cell death in astrocytes is mediated by ceramide signalling pathways triggering apoptosis. Here we show that both ethanol and ceramide are able to induce apoptotic death in cultured astrocytes, in a dose-dependent manner, and that C2-ceramide addition potentiates the apoptotic effects of ethanol. Cell death induced by ethanol is associated with stimulation of neutral and acidic sphingomyelinase (SMase) and ceramide generation, as well as with activation of stress-related kinases, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK) pathways. We also provide evidence for the participation of JNK and p38 in ethanol-induced cell death, because pharmacological inhibitors of these kinases largely prevent the apoptosis induced by ethanol or by ethanol and C2-ceramide. Furthermore, we show that ethanol-induced ERK activation triggers the stimulation of cyclo-oxygenase-2 (COX-2) and the release of prostaglandin E2, and that blockade of the mitogen-activated protein kinase kinase (MEK)/ERK pathway by PD98059 abolishes the up-regulation of COX-2 induced by ethanol plus ceramide, and decreases the ethanol-induced apoptosis. These results strongly suggest that ethanol is able to stimulate the SMase-ceramide pathway, leading to the activation of signalling pathways implicated in cell death. These findings provide an insight into the mechanisms involved in ethanol-induced astroglial cell death during brain development.  相似文献   

16.
The yeast Saccharomyces cerevisiae is a common model organism for biological discovery. It has become popularized primarily because it is biochemically and genetically amenable for many fundamental studies on eukaryotic cells. These features, as well as the development of a number of procedures and reagents for isolating protein complexes, and for following macromolecules in vivo, have also fueled studies on nucleo-cytoplasmic transport in yeast. One limitation of using yeast to study transport has been the absence of a reconstituted in vitro system that yields quantitative data. However, advances in microscopy and data analysis have recently enabled quantitative nuclear import studies, which, when coupled with the significant advantages of yeast, promise to yield new fundamental insights into the mechanisms of nucleo-cytoplasmic transport.  相似文献   

17.
Mitogen activated protein (MAP) kinases control eukaryotic proliferation, and import of kinases into the nucleus through the nuclear pore complex (NPC) can influence gene expression to affect cellular growth, cell viability and homeostatic function. The NPC is a critical regulatory checkpoint for nucleocytoplasmic traffic that regulates gene expression and cell growth, and MAP kinases may be physically associated with the NPC to modulate transport. In the present study, highly enriched NPC fractions were isolated and investigated for associated kinases and/or activity. Endogenous kinase activity was identified within the NPC fraction, which phosphorylated a 30 kD nuclear pore protein. Phosphomodification of this nucleoporin, here termed Nup30, was inhibited by apigenin and PD‐98059, two MAP kinase antagonists as well as with SB‐202190, a pharmacological blocker of p38. Furthermore, high throughput profiling of enriched NPCs revealed constitutive presence of all members of the MAP kinase family, extracellular regulated kinases (ERK), p38 and Jun N‐terminal kinase. The NPC thus contains a spectrum of associated MAP kinases that suggests an intimate role for ERK and p38 in regulation of nuclear pore function.  相似文献   

18.
19.
Age-dependent decreases in the protein concentrations of the nucleocytoplasmic transport factors karyopherin alpha2, CAS, and RanBP1 were found by comparing fibroblast cultures obtained from young, mature, and old human donors. Karyopherin beta1 levels do not change with age and present very little variation among donors. The decrease in the concentration of transport factors is accompanied by a reduction in the protein import rate in fibroblasts from old donors, as detected by a change in the intracellular localization of a test transport substrate that shuttles between the cytoplasm and the nucleus. Measurements of concentrations of the same import factors in organs and tissues of old mice revealed a decrease of CAS in kidney, lung, and spleen. The import reduction in old age is expected to lead to impaired activity of proteins whose functions depend on timely import into the nuclei.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号