首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dried biomass of Spirogyra neglecta rapidly sorbed the test metals and the process became saturated in 10-20min. Maximum sorption of Pb(II) [116.1mgg(-1)] and Cu(II) [115.3mgg(-1)] occurred at 0.1gl(-1) biomass and 100mgl(-1) metal concentration in the solution. Sorption of Cu(II) and Pb(II) occurred optimally at pH 4.5 and 5.0, respectively. Lead(II) and Cu(II) sorption were lesser from binary metal solution than from single metal solution. Lead(II) more severely inhibited Cu(II) sorption than vice versa thus reflecting greater affinity of Pb(II) for the biomass. NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles, Pb(II) and Cu(II) sorption decreased by 11% and 27%, respectively, at the end of the fifth cycle due inter alia to 10-15% loss of biomass. Nevertheless, Spirogyra appears to be a good sorbent for removing metals Cu(II) and Pb(II) from wastewaters.  相似文献   

2.
Akar T  Tunali S 《Bioresource technology》2006,97(15):1780-1787
The Pb(II) and Cu(II) biosorption characteristics of Aspergillus flavus fungal biomass were examined as a function of initial pH, contact time and initial metal ion concentration. Heat inactivated (killed) biomass was used in the determination of optimum conditions before investigating the performance of pretreated biosorbent. The maximum biosorption values were found to be 13.46 +/- 0.99 mg/g for Pb(II) and 10.82 +/- 1.46 mg/g for Cu(II) at pH 5.0 +/- 0.1 with an equilibrium time of 2 h. Detergent, sodium hydroxide and dimethyl sulfoxide pretreatments enhanced the biosorption capacity of biomass in comparison with the heat inactivated biomass. The biosorption data obtained under the optimum conditions were well described by the Freundlich isotherm model. Competitive biosorption of Pb(II) and Cu(II) ions was also investigated to determine the selectivity of the biomass. The results indicated that A. flavus is a suitable biosorbent for the removal of Pb(II) and Cu(II) ions from aqueous solution.  相似文献   

3.
Heavy metal pollution is a prevalent and critical environmental concern. Its rampancy is attributed to indiscriminate anthropogenic activities. Several technologies including biosorption have been continuously researched upon to overcome the limitations of the conventional method of treatments in removal of heavy metals. Biosorption technology involves the application of a biomass in its nonliving form. Pteris vittata L., a pteridophyte, considered as an invasive weed was investigated in the present study as a potential decontaminant of toxic metals, Cr(VI) and Cd(II). The adsorption capacity of the biosorbent for Cr(VI) and Cd(II) under equilibrium conditions was investigated. The morphology, elemental composition, functional groups, and thermal stability of the biosorbent before and after metal loading were evaluated. At 303?K and an equilibrium time of 120?min, the maximum loading of Cr(VI) on the biosorbent was estimated to be 166.7?mg/g at pH 2 and Cd(II) to be 31.3?mg/g at pH 6. Isotherm models, kinetic studies, and thermodynamic studies indicated the mechanisms, chemisorption, ion exchange and intraparticle diffusion, controlling the Cr(VI) and Cd(II) uptake, respectively. The interactive effect of multi-metal ions in binary component systems was synergistic for Cd(II) uptake. The results validate the toxic metal removal potency of the biosorbent.  相似文献   

4.
This paper reports biosorption of Zn(II), Cu(II) and Co(II) onto O. angustissima biomass from single, binary and ternary metal solutions, as a function of pH and metal concentrations via Central Composite Design generated by statistical software package Design Expert 6.0. The experimental design revealed that metal interactions could be best studied at lower pH range i.e. 4.0-5.0, which facilitates adequate availability of all the metal ions. The sorption capacities for single metal decreased in the order Zn(II)>Co(II)>Cu(II). In absence of any interfering metals, at pH 4.0 and an initial metal concentration of 0.5 mM in the solution, the adsorption capacities were 0.33 mmol/g Zn(II), 0.26 mmol/g Co(II) and 0.12 mmol/g Cu(II). In a binary system, copper inhibited both Zn(II) and Co(II) sorption but the extent of inhibition of former was greater than the latter; sorption values being 0.14 mmol/g Zn(II) and 0.27 mmol/g Co(II) at initial Zn(II) and Co(II) concentration of 1.5 mM each, pH 4.0 and 1mM Cu(II) as the interfering metal. Zn(II) and Co(II) were equally antagonistic to each others sorption; Zn(II) and Co(II) sorption being 0.23 and 0.24 mmol/g, respectively, at initial metal concentration of 1.5 mM each, pH 4.0 and 1mM interfering metal concentration. In contrast, Cu(II) sorption remained almost unaffected at lower concentrations of the competing metals. Thus, in binary system inhibition dominance observed was Cu(II)>Zn(II), Cu(II)>Co(II) and Zn(II) approximately Co(II), due to this the biosorbent exhibited net preference/affinity for Cu(II) sorption over Zn(II) or Co(II). Hence, the affinity series showed a trend of Cu(II)>Co(II)>Zn(II). In a ternary system, increasing Co(II) concentration exhibited protection against the inhibitory effect of Cu(II) on Zn(II) sorption. On the other hand, the inhibitory effect of Zn(II) and Cu(II) on Co(II) sorption was additive. The model equation for metal interactions was found to be valid within the design space.  相似文献   

5.
The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.  相似文献   

6.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

7.
In the present study, biosorption and bioaccumulation characteristics of Riccia fluitans to be use as biological mineral feed supplement, was investigated. Preliminary studies showed that R. fluitans was rich in protein (27-31%) and possessed high cation exchange capacity (14.5 mequiv g(-1)) and therefore it has the potential to find an application as biological carrier of microelements that are supplied to feed of animals, the diet of which is deficient in these components. In the present study, various processes of enrichment with microelements of crystalwort were investigated, including biosorption, bioaccumulation by non-growing and growing cells in single-(Cr(III) ions) and multi-metal system (Cr(III), Cu(II), Mn(II), Zn(II) ions). The effect of process parameters (temperature and pH) on metal ions binding efficiency was studied in single-metal system. It was found that at 20 degrees C and pH5 the biomass bound 106 mg g(-1) Cr(III) ions. The experimental results showed that the mostly advantageous process of metal ions binding was biosorption, the process that is also the mostly cost-effective.  相似文献   

8.
Biosorption of Cd(II) and Cr(VI) ions in single solutions using Staphylococcus xylosus and Pseudomonas sp., and their selectivity in binary mixtures was investigated. Langmuir and Freundlich models were applied to describe metal biosorption and the influence of pH, biomass concentration and contact time was determined. Maximum uptake capacity of cadmium was estimated to 250 and 278 mg g(-1), whereas that of chromium to 143 and 95 mg g(-1) for S. xylosus and Pseudomonas sp., respectively. In binary mixtures with Cd(II) ions as the dominant species, there is a profound selectivity for cadmium biosorption, reaching 96% and 89% for Pseudomonas sp. and S. xylosus, respectively, at 10 mg l(-1) Cd(II) and 5 mg l(-1) Cr(VI). Interesting, when chromium (VI) ions are the dominant species, there is selectivity towards chromium around 92% with S. xylosus only.  相似文献   

9.
Many studies have been carried out on the biosorption capacity of different kinds of biomass. However, reports on the kinetic and equilibrium study of the biosorption process are limited. In our experiments, the removal of Cr(VI) from aqueous solution was investigated in a batch system by sorption on the dead cells of Bacillus licheniformis isolated from metal-polluted soils. Equilibrium and kinetic experiments were performed at various initial metal concentrations, pH, contact time, and temperatures. The biomass exhibited the highest Cr(VI) uptake capacity at 50°C, pH 2.5 and with the initial Cr(VI) concentration of 300 mg/g. The Langmuir and Freundlich models were considered to identify the isotherm that could better describe the equilibrium adsorption of Cr(VI) onto biomass. The Langmuir model fitted our experimental data better than the Freundlich model. The suitability of the pseudo first-order and pseudo second-order kinetic models for the sorption of Cr(VI) onto Bacillus licheniformis was also discussed. It is better to apply the pseudo second-kinetic model to describe the sorption system.  相似文献   

10.
Tamarind fruit shell (TFS) was converted to a cation exchanger (PGTFS-SP-COOH) having a carboxylate functional group at the chain end by grafting poly(hydroxyethylmethacrylate) onto TFS (a lignocellulosic residue) using potassium peroxydisulfate-sodium thiosulfate redox initiator, and in the presence of N, N ′-methylenebisacrylamide as a cross-linking agent, followed by functionalization. The chemical modification was investigated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and potentiometric titrations. The feasibility of PGTFS-SP-COOH for the removal of heavy metals such as U(VI), Cu(II), Zn(II), and Co(II) ions from aqueous solutions was investigated by batch process. The optimum pH range for the removal of meal ions was found to be 6.0. For all the metal ions, equilibrium was attained within 2 h. The kinetic and isotherm data, obtained at optimum pH value 6.0, could be fitted with pseudo-second-order equation and Sips isotherm model, respectively. The Sips maximum adsorption capacity for U(VI), Cu(II), Zn(II), and Co(II) ions at 30°C was found to be 100.79, 65.69, 65.97, and 58. 81 mg/g, respectively. Increase of ionic strength decreased the metal ion adsorption. Different wastewater samples were treated with PGTFS-SP-COOH to demonstrate its efficiency in removing metal ions from wastewater. The adsorbed metal ions on PGTFS-SP-COOH can be recovered by treating with 1.0 M NaCl + 0.5 M HCl for U(VI) ions and 0.2 M HCl for Cu(II), Co(II), and Zn(II) ions. Four adsorption/desorption cycles were performed without significant decrease in removal capacity. The results showed that PGTFS-SP-COOH developed in this study exhibited considerable adsorption potential for the removal of U(VI), Cu(II), Zn(II), and Co(II) ions from water and wastewaters.  相似文献   

11.
Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres   总被引:1,自引:0,他引:1  
The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.  相似文献   

12.
The biosorption characteristics of Pb(II) and Cr(III) ions from aqueous solution using the lichen (Parmelina tiliaceae) biomass were investigated. Optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, and temperature. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by P. tiliaceae biomass. Langmuir model fitted the equilibrium data better than the Freundlich isotherm. The monolayer biosorption capacity of P. tiliaceae biomass for Pb(II) and Cr(III) ions was found to be 75.8 mg/g and 52.1mg/g, respectively. From the D-R isotherm model, the mean free energy was calculated as 12.7 kJ/mol for Pb(II) biosorption and 10.5 kJ/mol for Cr(III) biosorption, indicating that the biosorption of both metal ions was taken place by chemical ion-exchange. The calculated thermodynamic parameters (delta G degrees , delta H degrees and delta S degrees ) showed that the biosorption of Pb(II) and Cr(III) ions onto P. tiliaceae biomass was feasible, spontaneous and exothermic under examined conditions. Experimental data were also tested in terms of biosorption kinetics using pseudo-first-order and pseudo-second-order kinetic models. The results showed that the biosorption processes of both metal ions followed well pseudo-second-order kinetics.  相似文献   

13.
Cyanobacteria have been found to be potential biosorbents of metal ions from waste water. The Pb(2+) removal capacity of growing cells of indigenous cyanobacterium Oscillatoria laete-virens (Crouan and Crouan) Gomont was studied under batch experiments and it was found capable of removing Pb(2+) of lower concentrations (below 100?mg L(-1)). The effects of different concentrations of Pb(2+), on the growth rate of alga were also evaluated. The research parameters include the pH of the solution, contact time, initial concentration of Pb(2+), and culture density. Of the parameters studied, the pH of the solution was found to be the most crucial. The removal of Pb(2+) peaked at an initial pH of 5. The data obtained from the equilibrium experiments were found well fitting with the Langmuir isotherm with a maximum sorptive capacity (q (max)) of 20.36?mg?g(-1), indicating a good biosorbtive potential of growing cells. This was confirmed using scanning electron microscope and energy dispersive X-ray analysis, which showed the adsorption of lead on the surface of the cell. The species could tolerate a concentration as high as 60?mg L(-1) of Pb(2+). It was observed that the removal obeyed the pseudo-second-order kinetics. The percentage removal was found to decrease with increasing metal concentration, from 10 to 100?mg L(-1). FTIR analysis indicates the involvement of amino, carboxylic and amide groups in the sorption process. Among the desorbing agents evaluated, an efficient recovery of 90.2?% was achieved by HCl, in 24?h. Thus Oscillatoria laete-virens (Crouan and Crouan) Gomont seems to be a promising metal biosorbent for the treatment of Pb(2+), in waste waters.  相似文献   

14.
Biosorption is a surface-dependent phenomenon. Surface modifications by chemical treatment methods could either improve or reduce the biosorption capacity of potential biosorbents. In the present work, pristine Pteris vittata L. pinnae (PPV) powder was treated separately with sodium hydroxide (NaOH), calcium chloride (CaCl2), and nitric acid (HNO3). The pristine and treated biosorbents were used to assess the biosorption of Pb(II), Cd(II), and Cr(VI) as a function of pH. Kinetics and adsorption isotherms were studied. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and scanning electron microscope combined with energy dispersive x-ray (SEM-EDX) spectroscopic techniques were used to characterize the biosorbents before and after chemical treatments. The possible functional groups contributing to the metal sorption were identified. Results revealed favorable biosorption of Pb(II), Cd(II), and Cr(VI) described by pseudo-second order kinetics. NaOH-treated P. vittata (NPV) showed higher biosorption capacity for Pb(II) and Cd(II) compared to that of PPV. ATR-FTIR studies indicated that -OH, -COOH, and -NH2 groups were mainly involved in Cr(VI) and -OH in Pb(II) and Cd(II) biosorption. The enhanced efficiency of NPV and CaCl2 treated P. vittata (CPV) in the uptake of Pb(II) and Cd(II) compared to PPV can be associated with their altered physicochemical characters.  相似文献   

15.
Apricot stones were carbonised and activated after treatment with sulphuric acid (1:1) at 200 degrees C for 24 h. The ability of the activated carbon to remove Ni(II), Co(II), Cd(II), Cu(II), Pb(II), Cr(III) and Cr(VI) ions from aqueous solutions by adsorption was investigated. Batch adsorption experiments were conducted to observe the effect of pH (1-6) on the activated carbon. The adsorptions of these metals were found to be dependent on solution pH. Highest adsorption occurred at 1-2 for Cr(VI) and 3-6 for the rest of the metal ions, respectively. Adsorption capacities for the metal ions were obtained in the descending order of Cr(VI) > Cd(II) > Co(II) > Cr(III) > Ni(II) > Cu(II) > Pb(II) for the activated carbon prepared from apricot stone (ASAC).  相似文献   

16.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

17.
18.
The effect of copper(II), lead(II) and chromium(VI) ions on the growth and bioaccumulation properties of Aspergillus niger was investigated as a function of initial pH and initial metal ion concentration. The optimum pH values for growth and metal ion accumulation were determined as 5.0, 4.5 and 3.5 for copper(II), lead(II) and chromium(VI) ions, respectively. Although all metal ion concentrations caused an inhibition effect on the growth of A. niger, it was capable of removing of copper(II) and lead(II) with a maximum specific uptake capacity of 15.6 and 34.4 mg g−1 at 100 mg dm−3 initial copper(II) and lead(II) concentration, respectively. Growth of A. niger was highly effected by chromium(VI) ions and inhibited by 75 mg dm−3 initial chromium(VI) concentration since some inhibition occurred at lower concentrations.  相似文献   

19.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

20.
In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号