首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Y F Li  A Sancar 《Nucleic acids research》1991,19(18):4885-4890
We have cloned the phr gene that encodes DNA photolyase from Salmonella typhimurium by in vivo complementation of Escherichia coli phr gene defect. The S.typhimurium phr gene is 1419 base pairs long and the deduced amino acid sequence has 80% identity with that of E. coli photolyase. We expressed the S.typhimurium phr gene in E.coli by ligating the E.coli trc promoter 5' to the gene, and purified the enzyme to near homogeneity. The apparent molecular weight of S.typhimurium photolyase is 54,000 dalton as determined by SDS-polyacrylamide gel electrophoresis, which is consistent with the calculated molecular weight of 53,932 dalton from the deduced phr gene product. S.typhimurium photolyase is purple-blue in color with near UV-visible absorption peaks at 384, 480, 580, and 625 nm and a fluorescence peak at 470 nm. From the characteristic absorption and fluorescence spectra and reconstitution experiments, S.typhimurium photolyase appears to contain flavin and methenyltetrahydrofolate as chromophore-cofactors as do the E.coli and yeast photolyases. Thus, S.typhimurium protein is the third folate class photolyase to be cloned and characterized to date. The binding constant of S.typhimurium photolyase to thymine dimer in DNA is kD = 1.6 x 10(-9) M, and the quantum yield of photorepair at 384 nm is 0.5.  相似文献   

2.
Mechanism of damage recognition by Escherichia coli DNA photolyase   总被引:11,自引:0,他引:11  
Escherichia coli DNA photolyase binds to DNA containing pyrimidine dimers with high affinity and then breaks the cyclobutane ring joining the two pyrimidines of the dimer in a light- (300-500 nm) dependent reaction. In order to determine the structural features important for this level of specificity, we have constructed a 43 base pair (bp) long DNA substrate that contains a thymine dimer at a unique location and studied its interaction with photolyase. We find that the enzyme protects a 12-16-bp region around the dimer from DNase I digestion and only a 6-bp region from methidium propyl-EDTA-Fe (II) digestion. Chemical footprinting experiments reveal that photolyase contacts the phosphodiester bond immediately 5' and the 3 phosphodiester bonds immediately 3' to the dimer but not the phosphodiester bond between the two thymines that make up the dimer. Methylation protection and interference experiments indicate that the enzyme makes major groove contacts with the first base 5' and the second base 3' to the dimer. These data are consistent with photolyase binding in the major groove over a 4-6-bp region. However, major groove contacts cannot be of major significance in substrate recognition as the enzyme binds equally well to a thymine dimer in a 44-base long single strand DNA and protects a 10-nucleotide long region around the dimer from DNase I digestion. It is therefore concluded that the unique configuration of the phosphodiester backbone in the strand containing the pyrimidine dimer, as well as the cyclobutane ring of the dimer itself are the important structural determinants of the substrate for recognition by photolyase.  相似文献   

3.
G Payne  M Wills  C Walsh  A Sancar 《Biochemistry》1990,29(24):5706-5711
Escherichia coli DNA photolyase contains two chromophore cofactors, 1,5-dihydroflavin adenine dinucleotide (FADH2) and (5,10-methenyltetrahydrofolyl)polyglutamate (5,10-MTHF). A procedure was developed for reversible resolution of apophotolyase and its chromophores. To investigate the structures important for the binding of FAD to apophotolyase and of photolyase to DNA, reconstitution experiments with FAD, FMN, riboflavin, 1-deazaFAD, 5-deazaFAD, and F420 were attempted. Only FAD and 5-deazaFAD showed high-affinity binding to apophotolyase. The apoenzyme had no affinity to DNA but did regain its specific binding to thymine dimer containing DNA upon binding stoichiometrically to FAD or 5-deazaFAD. Successful reduction of enzyme-bound FAD with dithionite resulted in complete recovery of photocatalytic activity.  相似文献   

4.
S T Kim  A Sancar 《Biochemistry》1991,30(35):8623-8630
Photolyases reverse the effects of UV light on cells by converting cyclobutane dipyrimidine photoproducts (pyrimidine dimers, Pyr mean value of Pyr) into pyrimidine monomers in a light-dependent reaction. Previous work has suggested that, based on substrate preference, there are two classes of photolyase: DNA photolyase as exemplified by the Escherichia coli enzyme, and RNA photolyases found in plants such as Nicotiana tabacum and Phaseolus vulgaris. In experiments aimed at identifying substrate determinants, including the pentose ring, for binding and catalysis by E. coli DNA photolyase we tested several Pyr mean value of Pyr. We found that the enzyme has relative affinities for photodimers of T mean value of T greater than or equal to U mean value of T greater than U mean value of U much greater than C mean value of C and that the E-FADH2 form of the enzyme repairs these dimers at 366 nm with absolute quantum yields of 0.9 (T mean value of T), 0.8 (U mean value of T), 0.6 (U mean value of U), and 0.05 (C mean value of C). The enzyme also repairs an isolated thymine dimer and the synthetic substrate, 1,1'-trimethylene-bis (thymine) cyclobutane dimer. Unexpectedly, we found that this enzyme, previously thought to be specific for DNA, repairs uracil cyclobutane dimers in poly(rU). The affinity of photolyase for a uracil dimer in RNA is about 10(4)-fold lower than that for a U mean value of U in DNA; however, once bound, the enzyme repairs the photodimer with the same quantum yield whether the dimer is in ribonucleoside or deoxyribonucleoside form.  相似文献   

5.
M S Jorns  G B Sancar  A Sancar 《Biochemistry》1985,24(8):1856-1861
Escherichia coli DNA photolyase exhibits the same turnover number (3.4 min-1) for the repair of dimers in oligothymidylates [oligo(dT)n] containing 4-18 thymine residues. This rate is identical with that observed with polythymidylate and with native DNA. The enzyme exhibits a similar high affinity with oligomers containing seven or more thymine residues. A decrease in affinity is detectable with oligo(dT)n when n = 4-6. The enzyme is active with oligo(dT)3, but no evidence for saturation was obtained at dimer concentrations up to 15 microM where the observed repair rate is 43% of the turnover number observed with the higher homologues. Nearly quantitative (90-100%) repair is observed with oligo(dT)n when n is greater than or equal to 9. Photolyase can repair internal dimers and dimers at a 5' end where the terminal ribose is phosphorylated but not at unphosphorylated 5' or 3' ends. The latter can explain a progressive decrease in the extent of repair observed with short-chain oligomers. The observed specificity can also explain why the enzyme is inactive with oligo(dT)2 [p(dT)2] since the only dimer possible in oligo(dT)2 involves an unphosphorylated 3' end. That the enzyme can repair dimers in short-chain, single-stranded analogues for DNA suggests that in catalysis with DNA recognition of the dimer itself is important as opposed to recognition of the deformation in DNA structure produced by the dimer. Dimer repair with oligo(dT)n is detected by the increase in absorbance at 260 nm, a feature which is used as the basis for a rapid spectrophotometric assay with a lower detection limit around 150 pmol of dimer repaired.  相似文献   

6.
G Payne  A Sancar 《Biochemistry》1990,29(33):7715-7727
Escherichia coli DNA photolyase mediates photorepair of pyrimidine dimers occurring in UV-damaged DNA. The enzyme contains two chromophores, 1,5-dihydroflavin adenine dinucleotide (FADH2) and 5,10-methenyltetrahydrofolylpolyglutamate (MTHF). To define the roles of the two chromophores in the photochemical reaction(s) resulting in DNA repair and the effect of DNA structure on the photocatalytic step, we determined the absolute action spectra of the enzyme containing only FADH2 (E-FADH2) or both chromophores (E-FADH2-MTHF), with double- and single-stranded substrates and with substrates of different sequences in the immediate vicinity of the thymine dimer. We found that the shape of the action spectrum of E-FADH2 matches that of the absorption spectrum with a quantum yield phi (FADH2) = 0.69. The action spectrum of E-FADH2-MTHF is also in a fairly good agreement with the absorption spectrum with phi (FADH2-MTHF) = 0.59. From these values and from the previously established properties of the two chromophores, we propose that MTHF transfers energy to FADH2 with a quantum yield of phi epsilon T = 0.8 and that 1FADH2 singlet transfers an electron to or from the dimer with a quantum yield phi ET = 0.69. The chemical nature of the chromophores did not change after several catalytic cycles. The enzyme repaired a thymine dimer in five different sequence contexts with the same efficiency. Similarly, single- and double-stranded DNAs were repaired with the same overall quantum yield.  相似文献   

7.
P F Heelis  A Sancar 《Biochemistry》1986,25(25):8163-8166
Escherichia coli DNA photolyase contains a stable flavin neutral blue radical that is involved in photosensitized repair of pyrimidine dimers in DNA. We have investigated the effect of illumination on the radical using light of lambda greater than 520 nm from either a camera flash or laser. We find that both types of irradiations result in the photoreduction of the flavin radical with a quantum yield of 0.10 +/- 0.02. While photoreduction with the camera flash is minimal in the absence of an electron donor (dithiothreitol), laser flash photolysis at 532 nm reduces the flavin to the same extent in the presence or absence or an electron donor. Thus, it is concluded that the primary step in photoreduction involves an electron donor that is a constituent of the enzyme itself. Laser flash photolysis produces a transient absorption band at 420 nm that probably represents the absorption of the lowest excited doublet state (2(1)IIII*) of the radical and decays with first-order kinetics with k1 = 0.8 X 10(6) s-1. The photoreduction data combined with the results of recent studies on the activity of dithionite-reduced enzyme suggest that electron donation by excited states of E-FADH2 is the mechanism of flavin photosensitized dimer repair by E. coli DNA photolyase.  相似文献   

8.
Escherichia coli DNA photolyase was expressed as C-terminal 6x histidine-fused protein. Purification of His-tagged E. coli DNA photolyase was developed using immobilized metal affinity chromatography with Chelating Sepharose Fast Flow. By one-step affinity chromatography, approximate 4.6 mg DNA photolyase was obtained from 400 ml E. coli culture. The purified His-tagged enzyme was combined with two chromophors, FADH and MTHF. Using the oligonucleotide containing cyclobutane pyrimidine dimer as substrate, both reversed-phase high-performance liquid chromatography and size-exclusion high-performance liquid chromatography were developed to measure the enzyme activity. The enzyme was found to be able to repair the cyclobutane pyrimidine dimer with the turnover rate of 2.4 dimers/photolyase molecule/min.  相似文献   

9.
A new fluorescent compound, factor(420) (F(420)), which is involved in the hydrogen metabolism of hydrogen-grown Methanobacterium strain M.o.H. has been isolated and purified. Acid hydrolysis of this compound with 6 m HCl for 24 hr releases a ninhydrin-positive compound (glutamic acid), an acid-stable chromophore, phosphate, and an ether-soluble phenolic component. Factor(420) may be reduced by either sodium dithionite or sodium borohydride at pH 7.3 with concomitant loss of its fluorescence and its major absorption peak at 420 nm. Crude cell-free extracts of strain M.o.H. reduce F(420) only under a hydrogen atmosphere. F(420) is photolabile aerobically in neutral and basic solutions, whereas the acid-stable chromophore is not photolabile under these conditions. An approximate molecular weight of 630 +/- 8% for F(420) was determined by Sephadex G-25 chromatography. At the present time, F(420) is proposed as a trivial name for the unknown fluorescent compound because of its strong absorption maximum of 420 nm at pH 7.  相似文献   

10.
Similar rates have been observed for dimer repair with Escherichia coli photolyase and the heterogeneous mixtures generated by UV irradiation of oligothymidylates [UV-oligo(dT)n, n greater than or equal to 4] or DNA. Comparable stability was observed for ES complexes formed with UV-oligo(dT)n, (n greater than or equal to 9) or dimer-containing DNA. In this paper, binding studies with E. coli photolyase and a series of homogeneous oligonucleotide substrates (TpT, TpTp, pTpT, TpTpT, TpTpT, TpTpTpT, TpTpTpT, TpTpTpT, TpTpTpT) show that about 80% of the binding energy observed with DNA as substrate (delta G approximately 10 kcal/mol) can be attributed to the interaction of the enzyme with a dimer-containing region that spans only four nucleotides in length. This major binding determinant (TpTpTpT) coincides with the major conformational impact region of the dimer and reflects contributions from the dimer itself (TpT, delta G = 4.6 kcal/mol), adjacent phosphates (5'p, 0.8 kcal/mol; 3'p, 1.1 kcal/mol), and adjacent thymine residues (5'T, 0.8 kcal/mol; 3'T, 1.3 kcal/mol). Similar turnover rates (average kcat = 6.7 min-1) are observed with short-chain oligonucleotide substrates and UV-oligo(dT)18, despite a 25,000-fold variation in binding constants (Kd). In contrast, the ratio Km/Kd decreases as binding affinity decreases and appears to plateau at a value near 1. Turnover with oligonucleotide substrates occurs at a rate similar to that estimated for the photochemical step (5.1 min-1), suggesting that this step is rate determining. Under these conditions, Km will approach Kd when the rate of ES complex dissociation exceeds kcat.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The cyclobutane pyrimidine dimer (CPD) is a major type of DNA damage induced by ultraviolet B (UVB) radiation. CPD photolyase, which absorbs blue/UVA light as an energy source to monomerize dimers, is a crucial factor for determining the sensitivity of rice (Oryza sativa) to UVB radiation. Here, we purified native class II CPD photolyase from rice leaves. As the final purification step, CPD photolyase was bound to CPD-containing DNA conjugated to magnetic beads and then released by blue-light irradiation. The final purified fraction contained 54- and 56-kD proteins, whereas rice CPD photolyase expressed from Escherichia coli was a single 55-kD protein. Western-blot analysis using anti-rice CPD photolyase antiserum suggested that both the 54- and 56-kD proteins were the CPD photolyase. Treatment with protein phosphatase revealed that the 56-kD native rice CPD photolyase was phosphorylated, whereas the E. coli-expressed rice CPD photolyase was not. The purified native rice CPD photolyase also had significantly higher CPD photorepair activity than the E. coli-expressed CPD photolyase. According to the absorption, emission, and excitation spectra, the purified native rice CPD photolyase possesses both a pterin-like chromophore and an FAD chromophore. The binding activity of the native rice CPD photolyase to thymine dimers was higher than that of the E. coli-expressed CPD photolyase. These results suggest that the structure of the native rice CPD photolyase differs significantly from that of the E. coli-expressed rice CPD photolyase, and the structural modification of the native CPD photolyase leads to higher activity in rice.  相似文献   

12.
ABC excinuclease of Escherichia coli removes 6-4 photoproducts and pyrimidine dimers from DNA by making two single strand incisions, one 8 phosphodiester bonds 5' and another 4 or 5 phosphodiester bonds 3' to the lesion. We describe in this communication a method, which utilizes DNA photolyase from E. coli, pyrimidine dimer endonucleases from M. luteus and bacteriophage T4, and alkali hydrolysis, for analyzing the ABC excinuclease incision pattern corresponding to each of these photoproducts in a DNA fragment. On occasion, ABC excinuclease does not incise DNA exclusively 8 phosphodiester bonds 5' or 4 or 5 phosphodiester bonds 3' to the photoproduct. Both the nature of the adduct (6-4 photoproduct or pyrimidine dimer) and the sequence of neighboring nucleotides influence the incision pattern of ABC excinuclease. We show directly that photolyase stimulates the removal of pyrimidine dimers (but not 6-4 photoproducts) by the excinuclease. Also, photolyase does not repair CC pyrimidine dimers efficiently while it does repair TT or TC pyrimidine dimers.  相似文献   

13.
Native DNA photolyase from Escherichia coli contains 1,5-dihydroFAD (FADH2) plus 5,10-methenyltetrahydropteroylpolyglutamate. Quantum yield and action spectral data for thymine dimer repair were obtained by using a novel multiple turnover approach under aerobic conditions. This method assumes that catalysis proceeds via a (rapid-equilibrium) ordered mechanism with light as the second substrate, as verified in steady state kinetic studies. The action spectrum observed with native enzyme matched its absorption spectrum and an action spectrum simulated based on an energy transfer mechanism where dimer repair is initiated either by direct excitation of FADH2 or by pterin excitation followed by singlet-singlet energy transfer to FADH2. The quantum yield observed for dimer repair with native enzyme (phi Native = 0.722 +/- 0.0414) is similar to that observed with enzyme containing only FADH2 (phi EFADH2 = 0.655 +/- 0.0256), as expected owing to the high efficiency of energy transfer from the natural pterin to FADH2 [EET = 0.92]. The quantum yield observed for dimer repair decreased (2.1-fold) when the natural pterin was partially (68.8%) replaced with 5,10-CH(+)-H4folate (phi obs = 0.342 +/- 0.0149). This is consistent with the energy transfer mechanism (phi calc = 0.411 +/- 0.0118) since a 2-fold lower energy transfer efficiency is observed when the natural pterin is replaced with 5,10-CH(+)-H4folate (EET = 0.46) (Lipman & Jorns, 1992). The action spectrum observed for 5,10-CH(+)-H4folate-supplemented enzyme matched a simulated action spectrum which exhibited a small (5 nm) hypsochromic shift as compared with the absorption spectrum (lambda max = 385 nm).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The partial purification of the formate dehydrogenase from cell-free extracts of Methanobacterium formicicum decreased the rate of coenzyme F420 reduction 175-fold relative to the rate of methyl viologen reduction. FAD, isolated from this organism, reactivated the coenzyme F420-dependent activity of purified formate dehydrogenase and restored the activity ratio (coenzyme F420/methyl viologen) to near that in cell-free extracts. Neither flavin mononucleotide nor FADH2 replaced FAD. The reduced form of FAD inhibited the reactivation of coenzyme F420-dependent formate dehydrogenase activity by the oxidized form. The results suggest that native formate dehydrogenase from Methanobacterium formicicum contains noncovalently bound FAD that is required for coenzyme F420-dependent activity.  相似文献   

15.
DNA photolyase from the cyanobacterium Anacystis nidulans contains two chromophores, flavin adenine dinucleotide (FADH2) and 8-hydroxy-5-deazaflavin (8-HDF) (Eker, A. P. M., Kooiman, P., Hessels, J. K. C., and Yasui, A. (1990) J. Biol. Chem. 265, 8009-8015). While evidence exists that the flavin chromophore (in FADH2 form) can catalyze photorepair directly and that the 8-HDF chromophore is the major photosensitizer in photoreactivation it was not known whether 8-HDF splits pyrimidine dimer directly or indirectly through energy transfer to FADH2 at the catalytic center. We constructed a plasmid which over-produces the A. nidulans photolyase in Escherichia coli and purified the enzyme from this organism. Apoenzyme was prepared and enzyme containing stoichiometric amounts of either or both chromophores was reconstituted. The substrate binding and catalytic activities of the apoenzyme (apoE), E-FADH2, E-8-HDF, E-FAD(ox)-8-HDF, and E-FADH2-8-HDF were investigated. We found that FAD is required for substrate binding and catalysis and that 8-HDF is not essential for binding DNA, and participates in catalysis only through energy transfer to FADH2. The quantum yields of energy transfer from 8-HDF to FADH2 and of electron transfer from FADH2 to thymine dimer are near unity.  相似文献   

16.
Soluble formate dehydrogenase from Methanobacterium formicicum was purified 71-fold with a yield of 35%. Purification was performed anaerobically in the presence of 10 mM sodium azide which stabilized the enzyme. The purified enzyme reduced, with formate, 50 mumol of methyl viologen per min per mg of protein and 8.2 mumol of coenzyme F420 per min per mg of protein. The apparent Km for 7,8-didemethyl-8-hydroxy-5-deazariboflavin, a hydrolytic derivative of coenzyme F420, was 10-fold greater (63 microM) than for coenzyme F420 (6 microM). The purified enzyme also reduced flavin mononucleotide (Km = 13 microM) and flavin adenine dinucleotide (Km = 25 microM) with formate, but did not reduce NAD+ or NADP+. The reduction of NADP+ with formate required formate dehydrogenase, coenzyme F420, and coenzyme F420:NADP+ oxidoreductase. The formate dehydrogenase had an optimal pH of 7.9 when assayed with the physiological electron acceptor coenzyme F420. The optimal reaction rate occurred at 55 degrees C. The molecular weight was 288,000 as determined by gel filtration. The purified formate dehydrogenase was strongly inhibited by cyanide (Ki = 6 microM), azide (Ki = 39 microM), alpha,alpha-dipyridyl, and 1,10-phenanthroline. Denaturation of the purified formate dehydrogenase with sodium dodecyl sulfate under aerobic conditions revealed a fluorescent compound. Maximal excitation occurred at 385 nm, with minor peaks at 277 and 302 nm. Maximal fluorescence emission occurred at 455 nm.  相似文献   

17.
The absolute action spectrum of Escherichia coli DNA photolyase was determined in vitro. In vivo the photoreactivation cross-section (epsilon phi) is 2.4 X 10(4) M-1 cm-1 suggesting that the quantum yield (phi) is about 1.0 if one assumes that the enzyme has the same spectral properties (e.g. epsilon 384 = 1.8 X 10(4) M-1 cm-1) in vivo as those of the enzyme purified to homogeneity. The relative action spectrum of the pure enzyme (blue enzyme that contains FAD neutral semiquinone radical) agrees with the relative action spectrum for photoreactivation of E. coli, having lambda max = 384 nm. However, the absolute action spectrum of the blue enzyme yields a photoreactivation cross-section (epsilon phi = 1.2 X 10(3) at 384 nm) that is 20-fold lower than the in vivo values indicative of an apparent lower quantum yield (phi approximately equal to 0.07) in vitro. Reducing the enzyme with dithionite results in reduction of the flavin semiquinone and a concomitant 12-15-fold increase in the quantum yield. These results suggest that the flavin cofactor of the enzyme is fully reduced in vivo and that, upon absorption of a single photon in the 300-500 nm range, the photolyase chromophore (which consists of reduced FAD plus the second chromophore) donates an electron to the pyrimidine dimer causing its reversal to two pyrimidines. The reduced chromophore is regenerated at the end of the photochemical step thus enabling the enzyme to act catalytically.+  相似文献   

18.
8-Oxoguanine-DNA glycosylases play a key role in the repair of oxidatively damaged DNA. The Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are DNA base excision repair enzymes that catalyze the removal of 7,8-dihydro-8-oxoguanine (oxoG) residue, and cleave DNA strand. Specific contacts between DNA phosphate groups and amino acids from active centers of these enzymes play a significant role in DNA-protein interactions. In order to design new non-hydrolyzable substrate analogs of Fpg and hOGG1 for structural studies modified DNA duplexes containing pyrophosphate or OEt-substituted pyrophosphate internucleotide (SPI) groups near the damage were tested. We showed that enzymes recognize and specifically bind to DNA duplexes obtained. The mechanism of incision of oxoG by the Fpg and hOGG1 was determined. We revealed that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the oxoG. In contrast, Fpg and hOGG1 effectively incise DNA duplex carrying analogous phosphate modifications 5' to the oxoG. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or substituted pyrophosphate groups immediately 3' to the oxoG are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a oxoG-containing DNA bound to catalytically active wild-type enzymes as well as their pro- and eucaryotic homologs.  相似文献   

19.
Methanobacterium ruminantium was shown to possess a nicotinamide adenine dinucleotide phosphate (NADP)-linked factor 420 (F420)-dependent hydrogenase system. This system was also shown to be present in Methanobacterium strain MOH. The hydrogenase system of M. ruminantium also links directly to F420, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), methyl viologen, and Fe-3 plus. It has a pH optimum of about 8 and an apparent Km for F420 of about 5 x 10-6 M at pH 8 when NADP is the electron acceptor. The F420-NADP oxidoreductase activity is inactive toward nicotinamide adenine dinucleotide (nad) and no NADPH:NAD or FADH2(FMNH2):NAD transhydrogenase system was detected. Neither crude ferredoxin nor boiled crude extract of Clostridium pasteuranum could replace F420 in the NADP-linked hydrogenase reaction of M. ruminantium. Also, neitther F420 nor a curde "ferredoxin" fraction from M. ruminantium extracts could substitute for ferredoxin in the pyruvate-ferredoxin oxidoreductase reaction of C. pasteurianum.  相似文献   

20.
Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and human 8-oxoguanine-DNA glycosylase (hOGG1) are base excision repair enzymes involved in the 8-oxoguanine (oxoG) repair pathway. Specific contacts between these enzymes and DNA phosphate groups play a significant role in DNA-protein interactions. To reveal the phosphates crucial for lesion excision by Fpg and hOGG1, modified DNA duplexes containing pyrophosphate and OEt-substituted pyrophosphate internucleotide (SPI) groups near the oxoG were tested as substrate analogues for both proteins. We have shown that Fpg and hOGG1 recognize and specifically bind the DNA duplexes tested. We have found that both enzymes were not able to excise the oxoG residue from DNA containing modified phosphates immediately 3' to the 8-oxoguanosine (oxodG) and one nucleotide 3' away from it. In contrast, they efficiently incised DNA duplexes bearing the same phosphate modifications 5' to the oxodG and two nucleotides 3' away from the lesion. The effect of these phosphate modifications on the substrate properties of oxoG-containing DNA duplexes is discussed. Non-cleavable oxoG-containing DNA duplexes bearing pyrophosphate or SPI groups immediately 3' to the oxodG or one nucleotide 3' away from it are specific inhibitors for both 8-oxoguanine-DNA glycosylases and can be used for structural studies of complexes comprising a wild-type enzymes bound to oxoG-containing DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号