首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
d-β-Hydroxybutyrate dehydrogenase of beef heart mitochondria is a lipid-requiring enzyme, bound to the inner membrane. The orientation of this enzyme in the membrane has been studied by comparing the characteristics of the enzyme in mitochondria and ‘inside-out’ submitochondrial vesicles. We observe that the enzymic activity is (1) latent in intact mitochondria; (2) relatively stable to trypsin digestion in mitochondria but rapidly inactivated in submitochondrial vesicles by this treatment; and (3) released more rapidly from submitochondrial vesicles by phospholipase A2 digestion than from mitochondria. Conclusive evidence that d-β-hydroxybutyrate dehydrogenase is localized on the matrix face of the mitochondrial inner membrane is provided by the correlation that the enzyme is released from submitochondrial vesicles before the membrane becomes leaky to cytochrome c. The arrangement of d-β-hydroxybutyrate dehydrogenase in the membrane is discussed within a generalized classification of the orientation of proteins in membranes. The evidence indicates that d-β-hydroxybutyrate dehydrogenase is an amphipathic molecule and as such is inlaid in the membrane, i.e. the enzyme is partially inserted into the hydrophobic milieu of the membrane, with the polar, functional end extending into the aqueous milieu.  相似文献   

2.
Yeda press disruption of thylakoids in the presence of magnesium followed by aqueous polymer two-phase partitioning fractionated the total thylakoid membrane material into two distinctly different fractions. One fraction comprised approx. 60% of the material on a chlorophyll basis and contained inside-out vesicles while the other fraction (40%) contained right-side-out vesicles. The sidedness of the vesicles was determined from the direction of their light-induced proton translocation. The inside-out vesicles showed a pronounced Photosystem (PS) II enrichment as judged by their high PS II and low PS I activities. Moreover, they showed a high ratio between the PS II reaction centre chlorophyll-protein complex and the PS I reaction centre chlorophyll-protein complex (CP I). The chlorophyll ab ratio was as low as 2.3 compared to 3.2 for the starting material. In contrast, the right-side-out vesicles showed a pronounced PS I enrichment. Their chlorophyll ab ratio was 4.3–4.9. The tight stacking induced by Mg2+ allows a quantitative formation of inside-out vesicles from the appressed thylakoid regions while mainly non-appressed thylakoids turn right-side-out. The possibility of fractionating all of the thylakoid material into two sub-populations with markedly different composition with respect to PS I and PS II argues against a close physical association between the two photosystems and in favour of their spatial separation in the plane of the membrane. This fractionation procedure, which can be completed within 1 h and gives high yields of both PS II inside-out thylakoids and PS I right-side-out thylakoids, should be very useful for facilitating and improving studies on both the transverse and lateral organization of the thylakoid membrane.  相似文献   

3.
Mitochondrial permeability transition is typically characterized by Ca2+ and oxidative stress-induced opening of a nonselective proteinaceous membrane pore sensitive to cyclosporin A, known as the permeability transition pore (PTP). Data from our laboratory provide evidence that the PTP is formed when inner membrane proteins aggregate as a result of disulfide cross-linking caused by thiol oxidation. Here we compared the redox properties between PTP in intact mitochondria and mitoplasts. The rat liver mitoplasts retained less than 5% and 10% of the original outer membrane markers monoamine oxidase and VDAC, respectively. Kidney mitoplasts also showed a partial depletion of hexokinase. In line with the redox nature of the PTP, mitoplasts that were more susceptible to PTP opening than intact mitochondria showed higher rates of H2O2 generation and decreased matrix NADPH-dependent antioxidant activity. Mitoplast PTP was also sensitive to the permeability transition inducer tert-butyl hydroperoxide and to the inhibitors cyclosporin A, EGTA, ADP, dithiothreitol and catalase. Taken together, these data indicate that, in mitoplasts, PTP exhibits redox regulatory characteristics similar to those described for intact mitochondria.  相似文献   

4.
We have measured the cytochrome compositions of subfractions derived from appressed and non-appressed thylakoids by centrifugation and aqueous two-phase partition. Cytochrome b-559 (HP) was not detectable in the fraction derived from non-appressed thylakoids. Cytochromes f, b-563 and b-559 (LP) were all evenly distributed throughout the thylakoid membrane. This distribution points to plastocyanin as a possible lateral shuttle of reducing equivalents between spatially separated photosystems.Cytochrome f was accessible to externally added plastocyanin in the inside-out vesicles but not in vesicles of normal sidedness. This strongly supports a location at the inner side of the thylakoid membrane. Cytochrome b-563 was slowly reduced by dithionite in vesicles with both normal and inside-out orientation suggesting a location within the membrane interior.  相似文献   

5.
Membrane vesicles from a red mutant of Halobacteriumhalobium R1 accumulate protons when illuminated causing the pH of the suspension to rise. Sodium is extruded from the vesicles and a membrane potential is formed. This potential and the proton uptake are abolished by valinomycin if K+ is present. In contrast, Na+-efflux is uninhibited by valinomycin even though no membrane potential is detectable and H+ influx does not occur. Bis (hexafluoracetonyl)acetone (1799) stimulates proton uptake but does not abolish membrane potential. We propose that a light-dependent sodium pump is present. Passive proton uptake occurs in response to the electrical gradient created by this light-driven Na+ pump in contrast to the active proton, and passive Na+ flux that occurs in response to the light-driven proton pump described in vesicles of the parent strain of H.halobium R1.  相似文献   

6.
ESR spectrometry has been used to study fatty acid spin-labeled phosphatidylcholine exchange from single bilayer donor vesicles to various acceptor systems, such as intact or differently treated mitochondria, phospholipid multilamellar vesicles or single bilayer vesicles. This exchange is catalyzed by soluble non-specific rat liver protein, first investigated by Bloj and Zilversmit in 1977 (J. Biol. Chem. 252, 1613–1619). Non-catalyzed phosphatidylcholine exchange has also been studied. Full inhibition of both mechanisms occurs with lipid-depleted acceptor mitochondria, while N-ethylmaleimide-treated mitochondria behave as good acceptors during catalyzed exchange but are in no way effective during spontaneous exchange. Non-catalyzed exchange does not take place with phospholipase D-treated mitochondria as acceptors, while the pure catalyzed mechanism is inhibited by 28%. Neither multilamellar nor single bilayer phospholipid vesicles exchange spin-labeled phosphatidylcholine in the absence of protein, the former being a poorer acceptor system than the latter during catalyzed exchange, when this activity is 31 and 80%, respectively, of that of intact mitochondria. The hypothesis is made that the spontaneous mechanism is active among intact natural membranes and could be of some importance in vivo. Furthermore, the biomembrane protein moiety is assumed to be involved in the catalyzed exchange more as a phospholipid spacer than as a binder between the exchange protein and the membrane involved. Phospholipids, on the contrary, appear to be important for both functions.  相似文献   

7.
Renal phosphate (Pi) reabsorption is increased by growth hormone (GH) and decreased by parathyroid hormone (PTH). Na+-stimulated Pi transport across the brush border membrane of the proximal tubule is the initial step in the process of Pi reabsorption. To determine whether changes in Pi reabsorption induced by GH or PTH are accompanied by changes in brush border membrane Na+-gradient-stimulated Pi transport, we examined the effect of in vivo GH and PTH administration and thyroparathyroidectomy on Pi transport by isolated brush border membrane vesicles prepared from canine kidney. In experiments in which the effect of PTH administration was examined, the same animal provided the control kidney (before PTH administration) and the experimental kidney (after PTH administration). The Na+-gradient Pi overshoot in vesicles isolated from normal, GH-treated and thyroparathyroidectomized dogs was increased after in vivo PTH administration. GH administration and thyroparathyroidectomy increased the height of the overshoot compared to normal. PTH administration decreased the apparent V value by 44% in vesicles from normal animals. The apparent V value was increased, compared to normal, by GH (34%) and thyroparathyroidectomy (57%). PTH administration decreased the apparent V in both the latter groups. GH administration to thyroparathyroidectomized dogs further increased the apparent V. Changes in the apparent V paralleled changes in Pi reabsorption in vivo induced by experimental manipulations. We conclude that changes in renal Pi reabsorption induced by GH were like those induced by PTH, accompanied by changes in the Na+-stimulated Pi transport system in the renal brush border membrane, and that the effect of PTH on vesicular Pi transport in GH-treated dogs did not differ from the effect on vesicles from normal animals.  相似文献   

8.
The kinetic characteristics of Na+ -Ca2+ exchange in isolated sarcolemma vesicles from new-borne chick heart, which contain about 70% of right-side-out vesicles, were compared with those of cultured embryonic chick heart cells. Na+ -Ca2+ exchange was monitored as Nai-dependent Ca2+ uptake. Increase in the internal concentration of Na+ ([Na+]i) in these two preparations caused increase in both the initial rate and the saturation-level of Ca2+ uptake. Plots of the rate of Ca2+ uptake against [Na+]i showed similar saturation-kinetics in these two preparations. The apparent Michaelis constant (Km) (0.35 mM) for Ca2+ uptake by the intact cells was much higher than that (0.031 mM) for Ca2+ uptake by the vesicles. The degree of inhibition by Mg2+ was also higher in the cells than in the vesicles. Some possible reasons (age of the chicks used, membrane potential, etc.), for these differences were examined and are discussed.  相似文献   

9.
Basolateral membranes isolated from hog kidney cortex, enriched 12- to 15-fold in (Na+ + K+)-ATPase activity, were 80% oriented inside-out as determined by assay of oubain-sensitive (Na+ + K+)-ATPase activity before and after opening of the membrane vesicle preparation with a mixture of deoxycholate and EDTA. In these membrane preparations 80% of total phosphatidylethanolamine was accessible to trinitrophenylation by trinitrobenzenesulfonic acid at 4°C, while at 37°C all of phosphatidylethanolamine fraction was chemically modified. Phospholipase C treatment resulted in hydrolysis of 80% phosphatidylethanolamine, 40% phosphatidylcholine and 35% of phosphatidylserine. Sphingomyelinase treatment resulted in 20% hydrolysis of sphingomyelin, presumably derived from right-side-out oriented vesicles. Results indicate that phosphatidylethanolamine is oriented exclusively on the outer leaflet of the lipid bilayer of inside-out oriented vesicles. Methylation of phospholipids in basolateral membranes with S-adenosyl[methyl-3H]methionine resulted in the three successive methylation of ethanolamine moiety of phosphatidylethanolamine to phosphatidylcholine. The Km for S-adenosylmethionine was 1·10?4 M with an optimum pH 9.0 for the formation of all three methyl derivatives. Mg2+ was without any effect between pH 5 and 10. Basolateral membranes incubated in the presence of methyl donor, S-adenosylmethionine, exhibited increased (12–15%) (Ca2+ + Mg2+)-ATPase activity and increased ATP-dependent uptake of calcium. ATP-dependent calcium uptake in these vesicles was insensitive to oligomycin and ouabain but was abolished completely by 50 μM vanadate. The increase in ATP-dependent calcium uptake was due to an increase in Vmax and not due to a change in Km for Ca2+. Preincubation of membranes with S-adenosylhomocysteine, a methyltransferase inhibitor, abolished the stimulatory effect of phospholipid methylation on calcium uptake. Phospholipid methylation at both low and high pH did not result in a change in bulk membrane fluidity as determined by the fluorescence polarization of diphenylhexatriene. These results suggest that phospholipid methylation may regulate transepithelial calcium flux in vivo.  相似文献   

10.
Synexin, a soluble protein which increases the specificity of Ca2+ to aggregate isolated bovine chromaffin granules was prepared from bovine adrenal medullary tissue by the method of Creutz, Pazoles and Pollard (J. Biol. Chem. 253, 2858–2866, 1978). We also find that synexin increases both the initial rate and final amplitude of Ca2+-promoted aggregation of granule membranes. This effect is Ca2+-specific. However in contrast to Creutz etal, we find that synexin also potentiates aggregation of adrenal medulla and liver mitochondria and microsomes as well as phosphatidylserine vesicles. This lack of membrane specificity argues against the suggestion of Creutz etal that synexin specifically binds the granule to the plasma membrane prior to exocytosis invivo.  相似文献   

11.
The plasma membrane calcium pump in most mammalian cells is the basic mechanism for assuring a low cytoplasmic calcium concentration. In inside-out human red cell membrane vesicles /IOVs/ the substrate and metal specificity as well as the intracellular protein /calmodulin/ regulation of the ATP-dependent active calcium transport can be investigated insitu. In this paper we demonstrate that Me2+. ATP4? /in the following MeATP/ complexes, including MgATP, MnATP, CoATP, FeATP, and NiATP, can serve as substrates for the calcium pump in IOVs. Calcium pumping is activated by the above metals, while Sr, Ba, Cu, Cd ions or the trivalent cations are ineffective in this respect. Calmodulin-stimulation of the calcium transport is present independent of the metal ions used for the activation of the pump. Based on kinetic studies we suggest that divalent metal ions interact with the red cell calcium pump at four different sites: 1./ MeATP complex is the true substrate of the pump; 2./ Ca or Sr ions activate the system by binding to the transport site/s/ and other metal ions competitively inhibit this binding; 3./ the presence of free divalent metal ions /Mg, Mn, Co, Fe, or Ni, but not Ca, Sr, Ba/ is required for activating calcium translocation; 4./ interaction with a Ca — calmodulin complex specifically stimulates calcium pumping.  相似文献   

12.
Adenosine triphosphate-dependent glutathione transport was characterized using inside-out vesicles made from human erythrocytes. Kinetic analysis of the glutathione disulfide (GSSG) transport showed a biphasic Line-weaver-Burk plot as a function of GSSG concentration suggesting the operation of two different processes. One phase had a high affinity for GSSG and a low transport velocity. Most active at acidic pH and at 25°C, this transport activity was easily lost during the storage of vesicles at 4°C. The Km for Mg-ATP was 0.63 mM; guanosine triphosphate (GTP) substituted for ATP gave a 340% stimulation of transport activity. Neither dithiothreitol nor thiol reagents affected this transport process. The other phase had a low affinity for GSSG and a high transport velocity. Most active at pH 7.2 and 37°C, this transport activity was stable during storage of vesicles at 4°C for several days. The Km for Mg-ATP was 1.25 mM; GTP substituted with no change in activity. Dithiothreitol increased the V but did not alter the Km, and thiol reagents inhibited the transport. These findings suggest that there are two independent transfer processes for GSSG in human erythrocytes.  相似文献   

13.
Oxidative phosphorylation, active transport of proline, aerobic- and ATP-driven proton translocation and transhydrogenation of NADP+ by NADH, occurred in lipoic acid-deficient cells or vesicles of a lipoic acid auxotroph of E. coli, W1485 lip 2. Addition of lipoic acid had little effect on these processes. Tributyltin chloride, which has been proposed to inhibit oxidative phosphorylation by reaction with lipoic acid (Cain et al., Biochem. J. (1977) 166, 593), was an effective inhibitor of aerobic and ATP-dependent proton translocation and transhydrogenation in lipoic acid-deficient vesicles from this organism. Our results do not support the proposal of Partis et al. (FEBS Lett. (1977) 75, 47) that lipoic acid is involved in the energy transducing processes associated with the membrane of E. coli.  相似文献   

14.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg / ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t12) for at least one-third of the cell cholesterol of 3.2 ± 0.6 and 14.3 ± 1.5 h, respectively. Plasma membrane vesicles (0.5–5.0 μm diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t12 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 ± 0.5 and 11.2 ± 0.7 h, respectively. These t12 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rate indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 ± 0.1 and 2.9 ± 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t12 values for cholesterol efflux from these cell lines.  相似文献   

15.
The fluorescence quenching of the n-(9-anthroyloxy) (AO) fatty acid probes has been investigated in aqueous dispersions, vesicles of egg phosphatidylcholine and vesicles formed from red cell ghosts. Negatively charged (KI), neutral (acrylamide) and positively charged (CuSO4) quenchers were used to monitor the location of the probes. The fluorescence of the probes, with the exception of the shortest chain (11-(9-anthroyloxy)undecanoic acid) is not quenched by acrylamide when associated with vesicles. This indicates that in association with vesicles, the 9-anthroyloxy moiety of the long chain probes is buried within the hydrocarbon region and thus well shielded from the aqueous phase. Measurements with KI indicate that the probes are present in the membrane at depths corresponding to the position of the 9-anthroyloxy moiety on the fatty acid, and that the quencher itself forms a concentration gradient within the membrane. Very little or no CuSO4 quenching was observed for n-(9-anthroyloxy)stearic acid probes (n-AS)with n > 2, suggesting that in these vesicles Cu2+ does not significantly penetrate the bilayer.  相似文献   

16.
We have prepared vesicles from cell envelope membranes of Halobacteriumhalobium strains R1 and ET-15 which are able to synthesize ATP in response to illumination. This photophosphorylation is inhibited by dicyclohexylcarbodiimide (DCCD) and by phloretin. ATP synthesis in L vesicles from the R1 strain (which contain bacteriorhodopsin) is inhibited by the protonophore 1799 but not by valinomycin. In M vesicles from the R1 strain and in ET-15 vesicles (both contain halorhodopsin) photophosphorylation is inhibited by both 1799 and valinomycin. These data are consistent with the idea that light-driven ATP synthesis can be coupled to the electrochemical H+ gradient generated by bacteriorhodopsin or by halorhodopsin through the membrane potential component of protonmotive force.  相似文献   

17.
ATP-dependent calcium transport in cardiac sarcolemmal membrane vesicles   总被引:1,自引:0,他引:1  
Cardiac sarcolemmal (SL) membrane vesicles accumulated Ca in the presence of ATP. The accumulated Ca was released by osmotic shock and by the Ca ionophore A23187, indicating that the Ca had been transported into the vesicle interior. Ca uptake by the SL vesicles was not inhibited by ruthenium red, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenyl hydrazone, of NaN3, agents that are known to inhibit mitochondrial Ca transport activity. In contrast to the behavior of cardiac sarcoplasmic reticulum, Ca accumulation by the SL vesicles was not stimulated by oxalate and could not driven by p-nitrophenylphosphate hydrolysis. NaCl inhibited ATP-dependent Ca uptake by the SL vesicles. This effect was shown to be due to a stimulation of Ca efflux by Na, mediated by the sarcolemmal NaCa exchange system. The results provide conclusive evidence for the presence of an ATP-dependent Ca “pump” in the cardiac SL membrane.  相似文献   

18.
Isolated brush-border membrane vesicles prepared from human placenta are known to transport amino acids via a Na+-dependent mechanism akin to that found in gut and kidney vesicle preparations. We studied sulfate transport in placental vesicles and failed to identify any Na+-dependent uptake mechanism. Rather, uptake is a non-electrogenic process that is trans-stimulated by outwardly directed anion flux which is independent of cation. If anion exchange is tightly coupled invivo, the net transfer of sulfate from mother to the growing fetus may be driven by the continuous flux of bicarbonate in the opposite direction.  相似文献   

19.
The anion permeability of membrane vesicles prepared from the electric organ of Narke japonica was inhibited by the addition of 4,4′-diisothiocyano-stilbene-2,2′-disulfonic acid (DIDS). The permeability was measured by measuring changes in the scattered-light intensity caused by the osmotic volume change of vesicles; and also by the efflux measurement of ions from the vesicles using radioisotopes. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of membrane vesicles treated with dihydro analog of DIDS ([3H]H2DIDS) showed that the H2DIDS binding protein has a molecular weight of 180,000, and exists in membrane vesicles as a dimer formed by a disulfide bond between monomers of molecular weight 90,000.  相似文献   

20.
Beef heart mitochondrial protein factor FB [Higashiyama etal, Biochemistry 14, 4117–4121 (1975)] was purified and its properties were compared with those of coupling factor B. Both proteins stimulated ATP-driven NAD+ reduction in ammonia and EDTA-treated (AE-) submitochondrial particles, but the extent of stimulation (maximum activity of particles) was very low with FB. FB was found to be ineffective in stimulating Pi-ATP exchange in either AE-particles or reconstituted oligomycin-sensitive ATPase vesicles. Furthermore, FB failed to stimulate ATP-driven NAD+ reduction activity of AE-particles in the presence of saturating amounts of dithiothreitol (DTT). DTT alone stimulates the particle activity extensively as reported earlier. Rabbit antiserum to FB did not show a precipitin band with purified Factor B, nor did the antibody inhibit Factor B stimulated activity of the AE-particles. The data suggest that FB and Factor B are two different molecular species with different functions and fail to provide evidence that FB is a coupling factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号