首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate stereospecificity of phosphatidylinositol-specific phospholipase C from Bacillus cereus is examined using the resolved optical isomers of synthetic myo-inositol 1-(4-nitrophenyl phosphate), a chromogenic substrate for the phospholipase. The synthetic route employs mild acid-labile protecting groups and separation of the substituted myo-inositol enantiomers as the (-)-camphanyl ester diastereomers. Measurements of the initial rates of cleavage of the D and L enantiomers of the nitrophenyl substrate by phosphatidylinositol-specific phospholipase C from B. cereus show that this enzyme is essentially stereospecific for the D enantiomer. Under identical conditions, the rate of cleavage of the L isomer is less than 0.2% of that observed for the D isomer. The same is observed for the highly homologous enzyme from Bacillus thuringiensis. There is no measurable inhibition by the L enantiomer of the B. cereus enzyme acting on the D enantiomer, even when the molar ratio of L:D is 5, indicating that binding of the L enantiomer to the phospholipase is negligible. Thus, the enzyme active site is exquisitely sensitive to the stereochemistry of the myo-inositol group of the substrate.  相似文献   

2.
A fluorescent water-soluble substrate for phosphatidylinositol-specific phospholipase C was synthesized. The diacylglycerol moiety of the natural substrate, phosphatidylinositol, was replaced by the fluorescent moiety, 2-naphthol, resulting in the synthetic substrate, racemic 2-naphthyl myo-inositol-1-phosphate. The synthetic substrate provided a continuous fluorometric assay for the phosphatidylinositol-specific phospholipase C from Bacillus cereus. Initial rates of the cleavage of the 2-naphthyl substrate by the phospholipase measured by fluorometry were linear with time and the amount of enzyme added. The specific enzyme activity at pH 8.5 and 25 degrees C was about 0.04 mumol/min mg protein at an initial substrate concentration of 0.8 mM. 31P NMR experiments suggest that, as with phosphatidylinositol itself, cleavage of the fluorescent substrate proceeds in two steps via a myo-inositol-1,2-cyclic phosphate intermediate, and that only the D-isomer is a substrate for the B. cereus phospholipase. The synthetic substrate was stable during long-term storage as a solid in the dark at -20 degrees C. It was also stable for several weeks when stored in the dark frozen in aqueous solution near neutral pH.  相似文献   

3.
Hrmova M  Fincher GB 《Carbohydrate research》2007,342(12-13):1613-1623
Higher plant, family GH3 beta-D-glucan glucohydrolases exhibit exo-hydrolytic and retaining (e-->e) mechanisms of action and catalyze the removal of single glucosyl residues from the non-reducing termini of beta-D-linked glucosidic substrates, with retention of anomeric configuration. The broad specificity beta-D-glucan glucohydrolases are likely to play roles in cell wall re-modelling, turn-over of cell wall components and possibly in plant defence reactions against pathogens. Crystal structures of the barley beta-D-glucan glucohydrolase, obtained from both native enzyme and from the enzyme in complex with a substrate analogues and mechanism-based inhibitors, have enabled the basis of substrate specificity, the mechanism of catalysis, and the role of domain movements during the catalytic cycle to be defined in precise molecular terms. The active site of the enzyme forms a shallow 'pocket' that is located at the interface of two domains of the enzyme and accommodates two glucosyl residues. The propensity of the enzyme to hydrolyze a broad range of substrates with (1-->2)-, (1-->3)-, (1-->4)- and (1-->6)-beta-D-glucosidic linkages is explained from crystal structures of the enzyme in complex with non-hydrolysable S-glycoside substrate analogues, and from molecular modelling. During binding of gluco-oligosaccharides, the glucosyl residue at subsite -1 is locked in a highly constrained position, but the glucosyl residue at the +1 subsite is free to adjust its position between two tryptophan residues positioned at the entry of the active site pocket. The flexibility at subsite +1 and the projection of the remainder of the substrate away from the pocket provide a structural rationale for the capacity of the enzyme to accommodate and hydrolyze glucosides with different linkage positions and hence different overall conformations. While mechanism-based inhibitors with micromolar Ki constants bind in the active site of the enzyme and form esters with the catalytic nucleophile, transition-state mimics bind with their 'glucose' moieties distorted into the 4E conformation, which is critical for the nanomolar binding of these inhibitors to the enzyme. The glucose product of the reaction, which is released from the non-reducing termini of substrates, remains bound to the beta-D-glucan glucohydrolase in the -1 subsite of the active site, until a new substrate molecule approaches the enzyme. If dissociation of the glucose from the enzyme active site could be synchronized throughout the crystal, time-resolved Laue X-ray crystallography could be used to follow the conformational changes that occur as the glucose product diffuses away and the incoming substrate is bound by the enzyme.  相似文献   

4.
A chromogenic water-soluble substrate for phosphatidylinositol-specific phospholipase C was synthesized starting from myo-inositol employing isopropylidene and 4-methoxytetrahydropyranyl protecting groups. In this analogue of phosphatidylinositol, 4-nitrophenol replaces the diacylglycerol moiety, resulting in synthetic, racemic 4-nitrophenyl myo-inositol-1-phosphate. Using this synthetic substrate a rapid, convenient and sensitive spectrophotometric assay for the phosphatidylinositol-specific phospholipase C from Bacillus cereus was developed. Initial rates of the cleavage of the nitrophenol substrate were linear with time and the amount of enzyme used. At pH 7.0, specific activities for the B. cereus enzyme were 77 and 150 mumol substrate cleaved min-1 (mg protein)-1 at substrate concentrations of 1 and 2 mM, respectively. Under these conditions, less than 50 ng quantities of enzyme were easily detected. The chromogenic substrate was stable during long term storage (6 months) as a solid at -20 degrees C.  相似文献   

5.
The sensitivity of acetylcholinesterases (AChEs) from Musca domestica and from Drosophila melanogaster to the phosphatidylinositol-specific phospholipase C from Bacillus cereus and to the glycosylphosphatidylinositol-specific phospholipase C from Trypanosoma brucei was investigated. B. cereus phospholipase C solubilizes membrane-bound AChE, and both phospholipases convert amphiphilic AChEs into hydrophilic forms of the enzyme. The lipases uncover an immunological determinant that is found on other glycosylphosphatidylinositol-anchored membrane proteins after the same treatment. This immunological determinant is also present on the native hydrophilic form of AChE. The polypeptide bearing the active site of the membrane-bound enzyme migrates faster during sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the same polypeptide from the soluble enzyme. We conclude that AChE from insect brain is attached to membranes via a glycophospholipid anchor. This anchor is covalently linked to the polypeptide bearing the active esterase site of the enzyme and can be cleaved by an endogenous lipase.  相似文献   

6.
Investigation of the active center of rat pancreatic elastase   总被引:1,自引:0,他引:1  
We have isolated rat pancreatic elastase I (EC 3.4.21.36) using a fast two-step procedure and we have investigated its active center with p-nitroanilide substrates and trifluoroacetylated inhibitors. These ligands were also used to probe porcine pancreatic elastase I whose amino acid sequence is 84% homologous to rat pancreatic elastase I as reported by MacDonald, et al. (Biochemistry 21, (1982) 1453-1463). Both proteinases exhibited non-Michaelian kinetics for substrates composed of three or four residues: substrate inhibition was observed for most enzyme substrate pairs, but with Ala3-p-nitroanilide, rat elastase showed substrate inhibition, whereas porcine elastase exhibited substrate activation. With most of the longer substrates, Michaelian kinetics were observed. The kcat/Km ratio was used to compare the catalytic efficiency of the two elastases on the different substrates. For both elastases, occupancy of subsite S4 was a prerequisite for efficient catalysis, occupancy of subsite S5 further increased the catalytic efficiency, P2 proline favored catalysis and P1 valine had an unfavorable effect. Rat elastase has probably one more subsite (S6) than its porcine counterpart. The rate-limiting step for the hydrolysis of N-succinyl-Ala3-p-nitroanilide by rat elastase was essentially acylation, whereas both acylation and deacylation rate constants participated in the turnover of this substrate by porcine elastase. For both enzymes, trifluoroacetylated peptides were much better inhibitors than acetylated peptides and trifluoroacetyldipeptide anilides were more potent than trifluoroacetyltripeptide anilides. A number of quantitative differences were found, however, and with one exception, trifluoroacetylated inhibitors were less efficient with rat elastase than with the porcine enzyme.  相似文献   

7.
Family 3 beta-D-glucan glucohydrolases are distributed widely in higher plants. The enzymes catalyze the hydrolytic removal of beta-D-glucosyl residues from nonreducing termini of a range of beta-D-glucans and beta-D-oligoglucosides. Their broad specificity can be explained by x-ray crystallographic data obtained from a barley beta-D-glucan glucohydrolase in complex with nonhydrolyzable S-glycoside substrate analogs and by molecular modeling of enzyme/substrate complexes. The glucosyl residue that occupies binding subsite -1 is locked tightly into a fixed position through extensive hydrogen bonding with six amino acid residues near the bottom of an active site pocket. In contrast, the glucosyl residue at subsite +1 is located between two Trp residues at the entrance of the pocket, where it is constrained less tightly. The relative flexibility of binding at subsite +1, coupled with the projection of the remainder of bound substrate away from the enzyme's surface, means that the overall active site can accommodate a range of substrates with variable spatial dispositions of adjacent beta-D-glucosyl residues. The broad specificity for glycosidic linkage type enables the enzyme to perform diverse functions during plant development.  相似文献   

8.
Alpha-glucosidase III, which was different in substrate specificity from honeybee alpha-glucosidases I and II, was purified as an electrophoretically homogeneous protein from honeybees, by salting-out chromatography, DEAE-cellulose, DEAE-Sepharose CL-6B, Bio-Gel P-150, and CM-Toyopearl 650M column chromatographies. The enzyme preparation was confirmed to be a monomeric protein and a glycoprotein containing about 7.4% of carbohydrate. The molecular weight was estimated to approximately 68,000, and the optimum pH was 5.5. The substrate specificity of alpha-glucosidase III was kinetically investigated. The enzyme did not show unusual kinetics, such as the allosteric behaviors observed in alpha-glucosidases I and II, which are monomeric proteins. The enzyme was characterized by the ability to rapidly hydrolyze sucrose, phenyl alpha-glucoside, maltose, and maltotriose, and by extremely high Km for substrates, compared with those of alpha-glucosidases I and II. Especially, maltotriose was hydrolyzed over 3 times as rapidly as maltose. However, maltooligosaccharides of four or more in the degree of polymerization were slowly degraded. The relative rates of the k0 values for maltose, sucrose, p-nitrophenyl alpha-glucoside and maltotriose were estimated to be 100, 527, 281 and 364, and the Km values for these substrates, 11, 30, 13, and 10 mM, respectively. The subsite affinities (Ai's) in the active site were tentatively evaluated from the rate parameters for maltooligosaccharides. In this enzyme, it was peculiar that the Ai value at subsite 3 was larger than that of subsite 1.  相似文献   

9.
The phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis exhibits several types of interfacial activation. In the crystal structure of the closely related Bacillus cereus PI-PLC, the rim of the active site is flanked by a short helix B and a loop that show an unusual clustering of hydrophobic amino acids. Two of the seven tryptophans in PI-PLC are among the exposed residues. To test the importance of these residues in substrate and activator binding, we prepared several mutants of Trp-47 (in helix B) and Trp-242 (in the loop). Two other tryptophans, Trp-178 and Trp-280, which are not near the rim, were mutated as controls. Kinetic (both phosphotransferase and cyclic phosphodiesterase activities), fluorescence, and vesicle binding analyses showed that both Trp-47 and Trp-242 residues are important for the enzyme to bind to interfaces, both activating zwitterionic and substrate anionic surfaces. Partitioning of the enzyme to vesicles is decreased more than 10-fold for either W47A or W242A, and removal of both tryptophans (W47A/W242A) yields enzyme with virtually no affinity for phospholipid surfaces. Replacement of either tryptophan with phenylalanine or isoleucine has moderate effects on enzyme affinity for surfaces but yields a fully active enzyme. These results are used to describe how the enzyme is activated by interfaces.  相似文献   

10.
As a member of the alpha-amylase superfamily of enzymes, amylomaltase catalyzes either the transglycosylation from one alpha-1,4 glucan to another or an intramolecular cyclization. The latter reaction is typical for cyclodextrin glucanotransferases. In contrast to these enzymes, amylomaltase catalyzes the formation of cyclic glucans with a degree of polymerization larger than 22. To characterize the factors that determine the size of the synthesized cycloamyloses, we have analyzed the X-ray structure of amylomaltase from Thermus aquaticus in complex with the inhibitor acarbose, a maltotetraose derivative, at 1.9 A resolution. Two acarbose molecules are bound to the enzyme, one in the active site groove at subsite -3 to +1 and a second one approximately 14 A away from the nonreducing end of the acarbose bound to the catalytic site. The inhibitor bound to the catalytic site occupies subsites -3 to +1. Unlike the situation in other enzymes of the alpha-amylase family, the inhibitor is not processed and the inhibitory cyclitol ring of acarbose, which mimicks the half chair conformation of the transition state, does not bind to catalytic subsite -1. The minimum ring size of cycloamyloses produced by this enzyme is proposed to be determined by the distance of the specific substrate binding sites at the active site and near Tyr54 and by the size of the 460s loop. The 250s loop might be involved in binding of the substrate at the reducing end of the scissile bond.  相似文献   

11.
The active site of porcine enteropeptidase (EC 3.4.21.9) was investigated in order to characterize better both catalytic and binding sites. The participation of a serine and a histidine residue in the catalytic process was fully confirmed and the two residues were located on the light chain of the enzyme. The binding site was found to be composed of at least 2 subsites S1 and S2. The subsite S1 (similar to the trypsin-binding site) is responsible for the interactions with the small substrates of trypsin and the lysine side chain of trypsinogen, while subsite S2 (probably a cluster of lysines) is responsible for the interactions with the polyanionic sequence found in all trypsinogens. Binding of substrate by subsite S2 led to an increased efficiency of the catalytic site which can be correlated to the known high specificity of enteropeptidase.  相似文献   

12.
Human T-cell leukemia virus type-1 (HTLV-1) is associated with a number of human diseases. Based on the therapeutic success of human immunodeficiency virus type 1 (HIV-1) PR inhibitors, the proteinase (PR) of HTLV-1 is a potential target for chemotherapy. To facilitate the design of potent inhibitors, the subsite specificity of HTLV-1 PR was characterized and compared to that of HIV-1 PR. Two sets of substrates were used that contained single amino-acid substitutions in peptides representing naturally occurring cleavage sites in HIV-1 and HTLV-1. The original HIV-1 matrix/capsid cleavage site substrate and most of its substituted peptides were not hydrolyzed by the HTLV-1 enzyme, except for those with hydrophobic residues at the P4 and P2 positions. On the other hand, most of the peptides representing the HTLV-1 capsid/nucleocapsid cleavage site were substrates of both enzymes. A large difference in the specificity of HTLV-1 and HIV-1 proteinases was demonstrated by kinetic measurements, particularly with regard to the S4 and S2 subsites, whereas the S1 subsite appeared to be more conserved. A molecular model of the HTLV-1 PR in complex with this substrate was built, based on the crystal structure of the S9 mutant of Rous sarcoma virus PR, in order to understand the molecular basis of the enzyme specificity. Based on the kinetics of shortened analogs of the HTLV-1 substrate and on analysis of the modeled complex of HTLV-1 PR with substrate, the substrate binding site of the HTLV-1 PR appeared to be more extended than that of HIV-1 PR. Kinetic results also suggested that the cleavage site between the capsid and nucleocapsid protein of HTLV-1 is evolutionarily optimized for rapid hydrolysis.  相似文献   

13.
J Reed  V Kinzel  B E Kemp  H C Cheng  D A Walsh 《Biochemistry》1985,24(12):2967-2973
A limiting requirement for substrate specificity of the cAMP-dependent protein kinase is the presence of one or two basic residues located to the N-terminal side of the target substrate serine. Furthermore, circular dichroic (CD) studies have shown that binding of protein substrate involves a series of at least two independent conformational changes in the enzyme, each of which is initiated by a recognition signal on the substrate protein. The present study attempts to elucidate further the complete sequence of enzyme/ligand interactions by using the synthetic substrate peptide Kemptide and analogues differing from it at crucial points in the sequence: the Ala-peptide, where alanine is substituted for the target serine, and D-Ser-Kemptide, where the target serine is in the D rather than the L configuration. Examination of the effects of binding of these substrates on the intrinsic UV CD of the enzyme and the induced CD in the presence of Blue Dextran has revealed a third step in the substrate/enzyme binding interaction. Although sections of the conformational change at the active site are dependent on the basic subsite and the serine hydroxyl group on the peptide, respectively, the complete conformational change requires that the substrate be bound in random coil conformation. Where this does not occur, the kinetics show that the peptide will not act either as substrate or as inhibitor of the enzyme. Further, the interaction between the serine hydroxyl group and an enzyme tyrosine residue, previously observed, appears to be dependent on the correct orientation as well as the mere presence of the target -OH group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ervatamin C is an unusually stable cysteine protease from the medicinal plant Ervatamia coronaria belonging to the papain family. Though it cleaves denatured natural proteins with high specific activity, its activity toward some small synthetic substrates is found to be insignificant. The three-dimensional structure and amino acid sequence of the protein have been determined from X-ray diffraction data at 1.9 A (R = 17.7% and R(free) = 19.0%). The overall structure of ervatamin C is similar to those of other homologous cysteine proteases of the family, folding into two distinct left and right domains separated by an active site cleft. However, substitution of a few amino acid residues, which are conserved in the other members of the family, has been observed in both the domains and also at the region of the interdomain cleft. Consequently, the number of intra- and interdomain hydrogen-bonding interactions is enhanced in the structure of ervatamin C. Moreover, a unique disulfide bond has been identified in the right domain of the structure, in addition to the three conserved disulfide bridges present in the papain family. All these factors contribute to an increase in the stability of ervatamin C. In this enzyme, the nature of the S2 subsite, which is the primary determinant of specificity of these proteases, is similar to that of papain, but at the S3 subsite, Ala67 replaces an aromatic residue, and has the effect of eliminating sufficient hydrophobic interactions required for S3-P3 stabilization. This provides the possible explanation for the lower activity of ervatamin C toward the small substrate/inhibitor. This substitution, however, does not affect the binding of denatured natural protein substrates to the enzyme significantly, as there exist a number of additional interactions at the enzyme-substrate interface outside the active site cleft.  相似文献   

15.
An improved synthesis of fluorogenic substrate analogues for phosphatidylinositol-specific phospholipase C (PI-PLC) is described. The water-soluble substrates, which are derived from fluorescein, are not fluorescent until cleaved by the enzyme, and provide a convenient means to continuously monitor PI-PLC activity. The improvement in the synthesis lies in the method used to protect the hydroxyl groups of the inositol portion of the substrate molecule and allows a milder deprotection procedure to be used. The result is a much more reproducible synthesis of the substrate. The improved procedure has been employed to synthesize a series of fluorogenic substrates, which differ in the length of the aliphatic tail attached to the fluorescein portion of the molecule. The length of the tail was found to have a significant effect on the rate of cleavage of these substrates.  相似文献   

16.
Mulakala C  Reilly PJ 《Proteins》2005,61(3):590-596
AutoDock is a small-molecule docking program that uses an energy function to score docked ligands. Here AutoDock's grid-based method for energy evaluation was exploited to evaluate the force exerted by Fusarium oxysporum Cel7B on the atoms of docked cellooligosaccharides and a thiooligosaccharide substrate analog. Coupled with the interaction energies evaluated for each docked ligand, these forces give insight into the dynamics of the ligand in the active site, and help to elucidate the relative importance of specific enzyme-substrate interactions in stabilizing the substrate transition-state conformation. The processive force on the docked substrate in the F. oxysporum Cel7B active site is less than half of that on the docked substrate in the Hypocrea jecorina Cel7A active site. Hydrogen bonding interactions of the enzyme with the C2 hydroxyl group of the glucosyl residue in subsite -2 and with the C3 hydroxyl group of the glucosyl residue in subsite +1 are the most significant in stabilizing the distorted14B transition-state conformation of the glucosyl residue in subsite -1. The force calculations also help to elucidate the mechanism that prevents the active site from fouling.  相似文献   

17.
Resident mouse peritoneal macrophages have three phospholipase activities: a phospholipase A2 active at pH 4.5, a Ca2+-dependent phospholipase A2 active at pH 8.5 and a phosphatidylinositol-specific phospholipase C activity. When macrophages are exposed to zymosan in culture, the cellular activity of pH-4.5 phospholipase A2 is diminished in a manner dependent on zymosan concentration and time of exposure, whereas the cellular activities of pH-8.5 phospholipase A2 and phospholipase C remain unchanged. The depletion of pH-4.5 phospholipase A2 activity from the cell is paralleled by a quantitative recovery of this activity in the culture medium in a manner similar to the cellular depletion and extracellular recovery of two lysosomal enzymes. This release is specifically elicited by an inflammatory substance such as zymosan, since macrophages incubated with 6 micrometer latex spheres retain pH-4.5 phospholipase A2 activity and lysosomal enzyme activities intracellularly.  相似文献   

18.
The "family 9 polysaccharide lyase" pectate lyase L (Pel9A) from Erwinia chrysanthemi comprises a 10-coil parallel beta-helix domain with distinct structural features including an asparagine ladder and aromatic stack at novel positions within the superhelical structure. Pel9A has a single high affinity calcium-binding site strikingly similar to the "primary" calcium-binding site described previously for the family Pel1A pectate lyases, and there is strong evidence for a common second calcium ion that binds between enzyme and substrate in the "Michaelis" complex. Although the primary calcium ion binds substrate in subsite -1, it is the second calcium ion, whose binding site is formed by the coming together of enzyme and substrate, that facilitates abstraction of the C5 proton from the sacharride in subsite +1. The role of the second calcium is to withdraw electrons from the C6 carboxylate of the substrate, thereby acidifying the C5 proton facilitating its abstraction and resulting in an E1cb-like anti-beta-elimination mechanism. The active site geometries and mechanism of Pel1A and Pel9A are closely similar, but the catalytic base is a lysine in the Pel9A enzymes as opposed to an arginine in the Pel1A enzymes.  相似文献   

19.
α-Glucosidase III, which was different in substrate specificity from honeybee α-glucosidases I and II, was purified as an electrophoretically homogeneous protein from honeybees, by salting-out chromatography, DEAE-cellulose, DEAE-Sepharose CL-6B, Bio-Gel P-150, and CM-Toyopearl 650M column chromatographies. The enzyme preparation was confirmed to be a monomeric protein and a glycoprotein containing about 7.4% of carbohydrate. The molecular weight was estimated to approximately 68,000, and the optimum pH was 5.5. The substrate specificity of α-glucosidase III was kinetically investigated. The enzyme did not show unusual kinetics, such as the allosteric behaviors observed in α-glucosidases I and II, which are monomeric proteins. The enzyme was characterized by the ability to rapidly hydrolyze sucrose, phenyl α-glucoside, maltose, and maltotriose, and by extremely high Km for substrates, compared with those of α-glucosidases I and II. Especially, maltotriose was hydrolyzed over 3 times as rapidly as maltose. However, maltooligosaccharides of four or more in the degree of polymerization were slowly degraded. The relative rates of the k0 values for maltose, sucrose, p-nitrophenyl α-glucoside and maltotriose were estimated to be 100, 527, 281 and 364, and the Km values for these substrates, 11, 30, 13, and 10 mM, respectively. The subsite affinities (Ai’s) in the active site were tentatively evaluated from the rate parameters for maltooligosaccharides. In this enzyme, it was peculiar that the Ai value at subsite 3 was larger than that of subsite 1.  相似文献   

20.
Crystal structures of Bacillus stearothermophilus TRS40 neopullulanase and its complexes with panose, maltotetraose and isopanose were determined at resolutions of 1.9, 2.4, 2.8 and 3.2A, respectively. Since the latter two carbohydrates are substrates of this enzyme, a deactivated mutant at the catalytic residue Glu357-->Gln was used for complex crystallization. The structures were refined at accuracies with r.m.s. deviations of bond lengths and bond angles ranging from 0.005A to 0.008A and 1.3 degrees to 1.4 degrees, respectively. The active enzyme forms a dimer in the crystalline state and in solution. The monomer enzyme is composed of four domains, N, A, B and C, and has a (beta/alpha)(8)-barrel in domain A. The active site lies between domain A and domain N from the other monomer. The results show that dimer formation makes the active-site cleft narrower than those of ordinary alpha-amylases, which may contribute to the unique substrate specificity of this enzyme toward both alpha-1,4 and alpha-1,6-glucosidic linkages. This specificity may be influenced by the subsite structure. Only subsites -1 and -2 are commonly occupied by the product and substrates, suggesting that equivocal recognition occurs at the other subsites, which contributes to the wide substrate specificity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号