首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specific binding of HIV-1 nucleocapsid (NC) to the hinge region of the kissing-loop (KL) dimer formed by stemloop 1 (SL1) can have significant consequences on its ability to isomerize into the corresponding extended duplex (ED) form. The binding determinants and the effects on the isomerization process were investigated in vitro by a concerted strategy involving ad hoc RNA mutants and electrospray ionization-Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry, which enabled us to characterize the stoichiometry and conformational state of all possible protein-RNA and RNA-RNA assemblies present simultaneously in solution. For the first time, NC-hinge interactions were observed in constructs including at least one unpaired guanine at the 5'-end of the loop-loop duplex, whereas no interactions were detected when the unpaired guanine was placed at its 3'-end. This binding mode is supported by the presence of a grip-like motif described by recent crystal structures, which is formed by the 5'-purines of both hairpins held together by mutual stacking interactions. Using tandem mass spectrometry, hinge interactions were clearly shown to reduce the efficiency of KL/ED isomerization without inducing its complete block. This outcome is consistent with the partial stabilization of the extra-helical grip by the bound protein, which can hamper the purine components from parting ways and initiate the strand exchange process. These findings confirm that the broad binding and chaperone activities of NC induce unique effects that are clearly dependent on the structural context of the cognate nucleic acid substrate. For this reason, the presence of multiple binding sites on the different forms assumed by SL1 can produce seemingly contrasting effects that contribute to a fine modulation of the two-step process of RNA dimerization and isomerization.  相似文献   

2.
The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA.  相似文献   

3.
We have characterized the viral RNA conformation in wild-type, protease-inactive (PR-) and SL1-defective (DeltaDIS) human immunodeficiency virus type 1 (HIV-1), as a function of the age of the viruses, from newly released to grown-up (>or=24 h old). We report evidence for packaging HIV-1 genomic RNA (gRNA) in the form of monomers in PR- virions, viral RNA rearrangement (not maturation) within PR- HIV-1, protease-dependent formation of thermolabile dimeric viral RNAs, a new form of immature gRNA dimer at about 5 h post virion release, and slow-acting dimerization signals in SL1-defective viruses. The rates of gRNA dimer formation were >or=3-fold and >or=10-fold slower in DeltaDIS and PR- viruses than in wild-type, respectively. Thus, the DIS, i.e. the palindrome in the apical loop of SL1, is a dimerization initiation signal, but its role can be masked by one or several slow-acting dimerization site(s) when grown-up SL1-inactive virions are investigated. Grown-up PR- virions are not flawless models for immature virions because gRNA dimerization increases with the age of PR- virions, indicating that the PR- mutation does not "freeze" gRNA conformation in a nascent primordial state. Our study is the first on gRNA conformation in newly released mutant or primate retroviruses. It shows for the first time that the packaged retroviral gRNA matures in more than one step, and that formation of immature dimeric viral RNA requires viral protein maturation. The monomeric viral RNAs isolated from budding HIV-1, as modeled by newly released PR- virions, may be seen as dimers that are much more fragile than thermolabile dimers.  相似文献   

4.
5.
Dimerization of HIV-1 genomic RNA is initiated by kissing loop interactions at the Dimerization Initiation Site (DIS). Dynamics of purines that flank the 5' ends of the loop-loop helix in HIV-1 DIS kissing complex were explored using explicit solvent molecular dynamics (MD) simulations with the CHARMM force field. Multiple MD simulations (200 ns in total) of X-ray structures for HIV-1 DIS Subtypes A, B, and F revealed conformational variability of flanking purines. In particular, the flanking purines, which in the starting X-ray structures are bulged-out and stack in pairs, formed a consecutive stack of four bulged-out adenines at the beginning of several simulations. This conformation is seen in the crystal structure of DIS Subtype F with no interference from crystal packing, and was frequently reported in our preceding MD studies performed with the AMBER force field. However, as CHARMM simulations progressed, the four continuously stacked adenines showed conformational transitions from the bulged-out into the bulged-in geometries. Although such an arrangement has not been seen in any X-ray structure, it has been suggested by a recent NMR investigation. In CHARMM simulations, in the longer time scale, the flanking purines display the tendency to move to bulged-in conformations. This is in contrast with the AMBER simulations, which indicate a modest prevalence for bulged-out flanking base positions in line with the X-ray data. The simulations also suggest that the intermolecular stacking between purines from the opposite hairpins can additionally stabilize the kissing complex.  相似文献   

6.
7.
The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.  相似文献   

8.
9.
The dimerization constants for glycopeptide antibiotics vancomycin, ristocetin, and eremomycin and nine semisynthetic eremomycin derivatives were determined by the electrospray ionization mass spectrometry; the constants for natural antibiotics turned out to be close to those previously determined by NMR. No correlation between these dimerization constants and antibacterial activities of all the compounds toward the clinical strains of Gram-positive bacteria was found.  相似文献   

10.
11.
Metal binding to the C-terminal region of the copper-responsive repressor protein CopY is responsible for homodimerization and the regulation of the copper homeostasis pathway in Enterococcus hirae. Specific involvement of the 38 C-terminal residues of CopY in dimerization is indicated by zonal and frontal (large zone) size-exclusion chromatography studies. The studies demonstrate that the attachment of these CopY residues to the immunoglobulin-binding domain of streptococcal protein G (GB1) promotes dimerization of the monomeric protein. Although sensitivity of dimerization to removal of metal from the fusion protein is smaller than that found for CopY (as measured by ultracentrifugation studies), the demonstration that an unrelated protein (GB1) can be induced to dimerize by extending its sequence with the C-terminal portion of CopY confirms the involvement of this region in CopY homodimerization.  相似文献   

12.
13.
14.
Dimers and oligomers of F-type ATP synthases have been observed previously in mitochondria of various organisms and for the CF(o)F(1) ATP synthase of chloroplasts of Chlamydomonas reinhardtii. In contrast to mitochondria, however, dimers of chloroplast ATP synthases dissociate at elevated phosphate concentration. This suggests a regulation by cell physiological processes. Stable isotope labeling of living cells and blue-native PAGE have been employed to quantitate changes in the ratio of monomeric to dimeric CF(o)F(1) ATP synthase. Chlamydomonas reinhardtii cells were cultivated photoautotrophically in the presence of (15)N and photomixotrophically at natural (14)N abundance, respectively. As compared to photoautotrophic growth, an increased assembly of ATP synthase dimers on the expense of preexisting monomers during photomixotrophic growth was observed, demonstrating a metabolic control of the dimerization process.  相似文献   

15.
16.
We introduced mutations into the HIV-1 major homology region (MHR; capsids 153-172) and adjacent C-terminal region to analyze their effects on virus-like particle (VLP) assembly, membrane affinity, and the multimerization of the Gag structural protein. Results indicate that alanine substitutions at K158, F168 or E175 significantly diminished VLP production. All assembly-defective Gag mutants had markedly reduced membrane-binding capacities, but results from a velocity sedimentation analysis suggest that most of the membrane-bound Gag proteins were present, primarily in a higher-order multimerized form. The membrane-binding capacity of the K158A, F168A, and E175A Gag proteins increased sharply upon removal of the MA globular domain. While demonstrating improved multimerization capability, the two MA-deleted versions of F168A and E175A did not show marked improvement in VLP production, presumably due to a defect in association with the raft-like membrane domain. However, K158A bound to detergent-resistant raft-like membrane; this was accompanied by noticeably improved VLP production following MA removal. Our results suggest that the HIV-1 MHR and adjacent downstream region facilitate multimerization and tight Gag packing. Enhanced Gag multimerization may help expose the membrane-binding domain and thus improve Gag membrane binding, thereby promoting Gag multimerization into higher-order assembly products.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号