首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
C Lloyd  J R Kennedy  J Mendicino 《In vitro》1984,20(5):416-432
Swine tracheal epithelium has been cultured as explants in a chemically defined medium for periods of up to 2 wk. The viability of the explants was shown by the preservation of the ultrastructural features of cells in the epithelial layer and by the active incorporation of radioactive glucosamine and sulfate into secreted mucin glycoproteins. The rate of secretion of mucin glycoprotein was about 0.035 mg per cm2 per d. After initial 24 h lag period was shown to be due to the equilibration of intracellular mucin glycoprotein pools with radioactive precursors. The rate of secretion of glycoprotein showed a linear dependence on the area of the explant, and maximal incorporation was observed at 200 microM glucosamine. A higher concentration of 35SO4, 1000 microM, was required for maximal incorporation of the precursor. Insulin at 0.1 to 1 microgram/ml increased the rate of secretion twofold, whereas 0.1 to 100 micrograms/ml of hydrocortisone and 0.1 to 100 micrograms/ml of epinephrine significantly decreased the rate of secretion. Vitamin A had little or no effect of normal trachea explants at low concentrations, and, at higher concentrations, 10(-5) M, it decreased the secretion of mucin glycoproteins. Vitamin A, at a concentration of 10(-9) M, increased the rate of synthesis of glycoprotein at least fourfold in trachea explants from vitamin A-deficient rats. Mucus secretions collected from the surface of swine trachea and from the culture medium of trachea explants were purified. The mucus was solubilized by reduction and carboxymethylation, and the high molecular weight mucin glycoproteins were purified by chromatography on Sepharose CL-6B columns under dissociating conditions in 2 M guanidine HCl. The mucin glycoproteins purified from swine trachea and from the culture medium of trachea explants were virtually indistinguishable. They showed the same properties when examined by gel electrophoresis and immunoprecipitation. The purified glycoproteins contained about 25% protein, and serine, threonine, and proline were the principal amino acids present. More than 80% of the carbohydride chains in both samples were released by treatment with alkaline borohydride. Nearly the same molar ratio of N-acetylgalactosamine, N-acetylglucosamine, galactose, fucose, sulfate, and sialic acid was found in both preparations.  相似文献   

2.
Characterization of mucin isolated from rat tracheal transplants   总被引:1,自引:0,他引:1  
Subcutaneous rat tracheal grafts yield several milligrams of secretions from which a homogeneous mucin fraction was isolated and purified. Histological evidence demonstrated that a normal mucociliary epithelium and mucous secretion were maintained for the 4-6 weeks of the experiment. The collected secretions were initially characterized by column chromatography on Sepharose CL-6B which separated the excluded high molecular weight mucins (unpurified mucin fraction) from most of the serum-type glycoproteins and proteins, including albumin. A reductive alkylation treatment of the unpurified mucin fraction followed by Sepharose CL-4B chromatography removed contaminating protein and most of the mannose-containing material from the mucin fraction. The void volume material from this column produced a single high molecular weight band upon sodium dodecyl sulfate agarose/acrylamide gel electrophoresis. The purified mucin fraction contained 16.5% protein and primarily galactose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acid. This fraction also underwent beta-elimination in the presence of alkaline borohydride, demonstrating the presence of O-glycosidic linkages.  相似文献   

3.
Canine tracheal pouch secretions were solubilized with 1% sodium dodecyl sulfate and visualized by sodium dodecyl sulfate-agarose-acrylamide gel electrophoresis. Intact mucus, and water-soluble and insoluble fractions of mucus were shown to be composed of high molecular weight glycoproteins (Mr greater than or equal to 3 . 10(6)) and three major classes of proteins of lower molecular weight (Mr approximately 4 . 10(5), 2 . 10(5), and 6 . 10(4)). When the mucus secretions were further treated with a reducing agent, the glycoproteins were dissociated into subunits which appeared on the gel as three discrete bands. Separation of the high molecular weight glycoproteins from the other proteins was achieved by gel filtration on Biogel A-15m in the presence of 1% dodecyl sulfate following reduction and alkylation of mucus. These glycoproteins were further resolved, using DEAE cellulose chromatography in the presence of 6 M urea, into two protein fractions. Both fractions contained approximately 87% carbohydrate, high amounts of serine and threonine but differed significantly in contents of N-acetyl glucosamine and sialic acid; their mobility on gel electrophoresis was also different. Significant contents of cysteine were noted in both fractions. Results of this study indicate that the canine tracheal pouch preparations provide normal tracheal secretions which bear similarity in structure to the tracheobronchial secretions obtained from human patients.  相似文献   

4.
Summary The oligosaccharide chains in human and swine trachea and Cowper's gland mucin glycoproteins were completely removed in order to examine the subunit structure and properties of the polypeptide chains of these glycoproteins. The carbohydrate, which constitutes more than 70% of these glycoproteins, was removed by two treatments with trifluoromethanesulfonic acid for 3 h at 3° and periodate oxidation by a modified Smith degradation. All of the sialic acid, fucose, galactose, N-acetylglucosamine and N-acetylgalactosamine present in these glycoproteins was removed by these procedures.The deglycosylated polypeptide chains were purified and characterized. The size of the monomeric forms of all three polypeptide chains were very similar. Data obtained by gel filtration, release of amino acids during hydrolysis with carboxypeptidase B and gel electrophoresis in the presence of 0.1% dodecyl sulfate showed that a major fraction from each of the three mucin glycoproteins had a molecular size of about 67 kDa. All of the deglycosylated chains had a tendency to aggregate. Digestion with carboxypeptidases showed that human and swine trachea mucin glycoproteins had identical carboxyl terminal sequences, -Val-Ala-Phe-Tyr-Leu-Lys-Arg-COOH. Cowper's gland mucin glycoprotein had a similar carboxyl terminal sequence, -Val-Ala-Tyr-Leu-Phe-Arg-Arg-COOH. The yield of amino acids after long periods of hydrolysis with carboxypeptidases showed that at least 85% of the polypeptide chains in each of the deglycosylated preparations have these sequences. These results suggested that the polypeptide chains in these deglycosylated mucin glycoprotein preparations were relatively homogeneous.The deglycosylated polypeptide chains as well as the intact mucin glycoproteins had blocked amino terminii. The purified polypeptide chains were digested with trypsin-TCPK, and S. aureus V8 protease and the resulting peptides were isolated by gel electrophoresis in the presence of 0.1% dodecyl sulfate and by HPLC. Two partial amino acid sequences from swine trachea mucin glycoprotein, two partial sequences from human trachea mucin glycoprotein and three partial sequences from Cowper's gland mucin glycoprotein were determined. The partial amino acid sequences of the peptides isolated from swine trachea mucin glycoprotein showed more than 70% sequence homology to a repeating sequence present in porcine submaxillary mucin glycoprotein. Five to eight immunoprecipitable bands with sizes ranging from about 40 kDa to 46 kDa were seen when the polypeptide chains were digested with S. aureus V8 protease. All of the bands had blocked amino terminii and differed by a constant molecular weight of about 1.5 kDa. These data suggest that the polypeptides were formed by cleavage of glutamic acid residues present at regular intervals in the chains of all three mucin glycoproteins. These large immunoreactive peptides were formed by the removal of smaller peptides from the carboxyl terminal end of the deglycosylated mucin glycoprotein chains. Taken collectively, these findings indicate that the polypeptide chains in these mucin glycoproteins are very similar in subunit structure and that there is a high degree of homology between their polypeptide chains.  相似文献   

5.
Pancreatic mucins consist of core proteins that are decorated with carbohydrate structures. Previous studies have identified at least two physically distinct populations of mucins produced by a pancreatic adenocarcinoma cell line (HPAF); one is the MUC1 core protein, which includes an oligosaccharide structure identified by a monoclonal antibody (MAb) recognizing the DU-PAN-2 epitope. In this study, we purified and characterized a second mucin fraction, which also shows reactivity with the DU-PAN-2 antibody, but which has an amino acid composition that is not consistent with the MUC1 core protein. This new mucin was purified by ammonium sulfate precipitation, molecular sieve chromatography, and density gradient centrifugation. It eluted in the void volume of a Sepharose 4B column together with an associated low molecular weight protein, which could be further resolved. The mucin is highly polyanionic due to numerous sulfated and sialylated saccharide chains. Carbohydrate analyses of the purified mucin showed the presence of galactose, glucosamine, galactosamine, and sialic acid, but no mannose, glucose, or uronic acid. The purified and deglycosylated mucin shows no reactivity with anti-MUC1 apomucin antibody, but reacts with antiserum against deglycosylated tracheal mucins and antiserum against the MUC4 tandem repeat peptide. Analysis of mucin expression in HPAF cells revealed high levels of MUC1 and MUC4 mRNA, and moderate levels of MUC5AC and MUC5B mRNA. The amino acid composition of the purified mucin shows a high degree of similarity to the MUC4 core protein.  相似文献   

6.
Subcutaneous rat tracheal grafts yield several milligrams of secretions from which a homogeneous mucin fraction was isolated and purified. Histological evidence demonstrated that a normal mucociliary epithelium and mucous secretion were maintained for the 4–6 weeks of the experiment. The collected secretions were initially characterized by column chromatography on Sepharose CL-6B which separated the excluded high molecular weight mucins (unpurified mucin fraction) from most of the serum-type glycoproteins and proteins, including albumin. A reductive alkylation treatment of the unpurified mucin fraction followed by Sepharose CL-4B chromatography removed contaminating protein and most of the mannose-containing material from the mucin fraction. The void volume material from this column produced a single high molecular weight band upon sodium dodecyl sulfate agarose/acrylamide gel electrophoresis. The purified mucin fraction contained 16.5% protein and primarily galactose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acid. This fraction also underwent β-elimination in the presence of alkaline borohydride, demonstrating the presence of O-glycosidic linkages.  相似文献   

7.
Summary Swine tracheal epithelium has been cultured as explants in a chemically defined medium for periods of up to 2 wk. The viability of the explants was shown by the preservation of the ultrastructural features of cells in the epithelial layer and by the active incorporation of radioactive glucosamine and sulfate into secreted mucin glycoproteins. The rate of secretion of mucin glycoprotein was about 0.035 mg per cm2 per d. After initial 24 h lag period was shown to be due to the equilibration of intracellular mucin glycoprotein pools with radioactive precursors. The rate of secretion of glycoprotein showed a linear dependence on the area of the explant, and maximal incorporation was observed at 200 μM glucosamine. A higher concentration of35SO4, 1000 μM, was required for maximal incorporation of the precursor. Insulin at 0.1 to 1 μg/ml increased the rate of secretion twofold, whereas 0.1 to 100 μg/ml of hydrocortisone and 0.1 to 100 μg/ml of epinephrine significantly decreased the rate of secretion. Vitamin A had little or no effect of normal trachea explants at low concentrations, and, at higher concentrations, 10−5 M, it decreased the secretion of mucin glycoproteins. Vitamin A, at a concentration of 10−9 M, increased the rate of synthesis of glycoprotein at least fourfold in trachea explants from vitamin A-deficient rats. Mucus secretions collected from the surface of swine trachea and from the culture medium of trachea explants were purified. The mucus was solubilized by reduction and carboxymethylation, and the high molecular weight mucin glycoproteins were purified by chromatography on Sepharose CL-6B columns under dissociating conditions in 2M guanidine HCl. The mucin glycoproteins purified from swine trachea and from the culture medium of trachea explants were virtually indistingushable. They showed the same properties when examined by gel electrophoresis and immunoprecipitation. The purified glycoproteins contained about 25% protein, and serine, threonine, and proline were the principal amino acids present. More than 80% of the carbohydride chains in both samples were released by treatment with alkaline borohydride. Nearly the same molar ratio ofN-acetylgalactosamine,N-acetylglucosamine, galactose, fucose, sulfate, and sialic acid was found in both preparations. This investigation was supported by U.S. Public Health Service Grants HL 20868, HL 24688, and HL 24718 from the National Heart, Lung and Blood Institute, Bethesda, MD, and AM 28187 from the National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, Bethesda, MD.  相似文献   

8.
After chondroitinase digestion of bovine nasal and tracheal cartilage proteoglycans, subsequent treatment with trypsin or trypsin followed by chymotrypsin yielded two major types of polypeptide-glycosaminoglycan fragments which could be separated by Sepharose 6B chromatography. One fragment, located close to the hyaluronic acid-binding region of the protein core, had a high relative keratan sulfate content. This fragment contained about 60% of the total keratan sulfate, but less than 10% of the total chondroitin sulfate present in the original proteoglycan preparation. The weight average molecular weight of the keratan sulfate-enriched fragment was 122,000, as determined by sedimentation equilibrium centrifugation. The chemical and physical data indicate that this fragment contains an average of 10 to 15 keratan sulfate chains, if the average molecular weight of individual chains is assumed to be about 8,000, and about 5 chondroitin sulfate chains attached to a peptide of about 20,000 daltons. The other population of fragments was derived from the other end of the proteoglycan molecule, the chondroitin sulfate-enriched region, and contained mainly chondroitin sulfate chains. About 90% of the total chondroitin sulfate, but only 20 to 30% of the total keratan sulfate was recovered in these fragments. On the average, approximately 5 chondroitin sulfate chains and 1 keratan sulfate chain could be linked to the same peptide. Another 10 to 20% of the total keratan sulfate, originally found in or near the hyaluronic acid-binding region, was not separated from the chondroitin sulfate-enriched fragments. Hydroxylamine could be used to liberate a large molecular size, chondroitin sulfate-enriched fragment (Kav 0.54 on Sepharose 2B) from the proteoglycan aggregates. The remainder of the protein core, containing the keratan sulfate-enriched region, was bound to hyaluronic acid with the link proteins and recovered in the void volume on the Sepharose 2B column.  相似文献   

9.
Morphological and histochemical abnormalities in pancreatic mucin occur in many pancreatic disorders. However, the composition of pancreatic mucin is poorly understood. Purified mucin was isolated from pure pancreatic juice by sequential chromatography on Sepharose CL-2B and CL-4B followed by CsCl density gradient ultracentrifugation. The mucin preparation consists of 24% protein and 73% carbohydrate. Reduction of the macromolecule (greater than 2 x 10(6)) by mercaptoethanol resulted in the formation of subunits of molecular weight 500,000 and released several small molecular weight proteins, including a glycoprotein of an average molecular weight of 116,000. Cellulose acetate electrophoresis separated the mucin into three species of different staining properties for periodic acid-Schiff reagent and Alcian blue, suggesting the presence of microheterogeneity with respect to sulphation and sialation. Threonine, serine, and proline composed 48% of the total amino acids, while the oligosaccharide moiety contained N-acetylglucosamine, N-acetylgalactosamine, fucose, galactose, sialic acid, and sulphate. We also detected the presence of C16:0 and C18:0 fatty acids which were probably noncovalently bound to the pancreatic mucin.  相似文献   

10.
The salt soluble proteins from the fat globule membrane of cow's milk were resolved into three fractions by Sephadex column chromatography in sodium dodecyl sulfate. One of the fractions, termed glycoprotein B, was purified by rechromatography to essentially one band on sodium dodecyl sulfate gel electrophoresis. It was found to contain 14% carbohydrate including sialic acid, mannose, galactose, glucose, glucosamine and galactosamine. The amino acid composition of glycoprotein B was determined; it has amino terminal serine and carboxyl terminal leucine. The molecular weight of this glycoprotein as estimated by sodium dodecyl sulfate gel electrophoresis is 49 500.  相似文献   

11.
Two mucins were isolated from bovine submandibular glands and termed major and minor on a quantitative basis. The major mucin representing over 80% of the total glycoprotein fraction contained 37% of its dry weight as protein in contrast to 62% for the minor mucin. Differences in the amino acid composition reflected the higher proportion of typically non-glycosylated peptide in the minor mucin. The molar ratio ofN-acetylgalactosamine to serine plus threonine was 0.82 in major and 0.65 in minor mucins, indicating a lower degree of substitution of potential glycosylation sites in the minor mucin.Differences in the carbohydrate composition were found largely related to the sialic acids, with higher relative amounts ofN-glycoloylneuraminic acid in the minor mucin. In addition, the proportion of di-O-acetylated sialic acids was higher in the major mucin. The rate of sialidase action on the two mucins could be correlated with the content ofN-glycoloylneuraminic acid in each glycoprotein. There was no difference in the type of oligosaccharide found in each mucin and the differences in relative proportions reflected the monosaccharide composition for the two mucins. Gel filtration on Sepharose CL 2B showed a lower molecular weight distribution for the minor in contrast to the major mucin which was partially excluded. Density gradient centrifugation reflected this variation. SDS-PAGE demonstrated a regular banding pattern for the major mucin with a lowest subunit size of 1.8×105 Da and aggregates in excess of 106 Da, while the minor mucin ranged from 3.0 × 105 to 106 Da. The chemical composition of the isolated mucins was compared with previous histochemical analysis of mucin distribution in bovine submandibular glands and indicates a possible cellular location for each mucin.Abbreviations PBS 0.01m sodium phosphate buffer, pH 7.3, containing 0.15m NaCl - Neu5Ac N-acetylneuraminic acid - Neu5Gc N-glycoloylneuraminic acid - GalNAc-ol N-acetylgalactosaminitol  相似文献   

12.
The role of sulfation in the processing of mucus glycoprotein in gastric mucosa was investigated. Rat gastric mucosal segments were incubated in MEM at various medium sulfate concentrations in the presence of [35S]Na2SO4, [3H]glucosamine and [3H]proline, with and without chlorate an inhibitor of PAPS formation. The results revealed that the mucin sulfation attained maximum at 300 microM medium sulfate concentration. Introduction of chlorate into the incubation medium, while having no effect on the protein synthesis as evidenced by [3H]proline incorporation, caused at its optimal concentration of 2 mM a 90% decrease in mucin sulfation and a 40% drop in mucin glycosylation. Evaluation of mucin molecular forms distribution indicated the predominance of the high molecular mucin form in the intracellular fraction and the low molecular mucin from in the extracellular fraction. Increase in medium sulfate caused an increase in the high molecular weight mucin form in both fractions, and this effect was inhibited by chlorate. Also, higher medium sulfate concentrations led to a higher degree of sulfation in the high molecular weight mucin form, the effect of which was inhibited by chlorate. The results suggest that the sulfation process is an early event taking place at the stage of mucin subunit assembly and is required for mucin polymer formation. Hence, the disturbances in mucin sulfation process could be detrimental to the maintenance of gastric mucus coat integrity.  相似文献   

13.
Human cervical mucin was solubilized from the gel phase of pooled midcycle cervical mucus using 6 M guanidine hydrochloride and 10 mM dithiothreitol and was then alkylated with iodoacetamide. Mucin was then purified by gel filtration on Bio-Gel A-50m resin in buffer containing 0.1% sodium dodecyl sulfate. The purified mucin gave a single band upon electrophoresis in either 5% acrylamide or 1% agarose gels. Protein comprised 21% of the glycoprotein by weight and amino acid analysis revealed a high content of Ser and Thr. Saccharide analysis yielded approximate molar ratios of Fuc:Gal:GlcNAc:GalNAc:NeuAc = 1:2:1:1:0.5. Inorganic sulfate, 1% by weight, was detected, but mannose was absent. Reductive alkali treatment of mucin resulted in release of oligosaccharides with concomitant conversion of 77% of GalNAc to its reduced derivative N-acetylgalactosaminitol (GalNAcol) thus demonstrating O-glycosidic linkage of GalNAc to protein. Reduced oligosaccharides were purified by ion exchange chromatography on DEAE-cellulose, paper chromatography, and high resolution gel filtration on Bio-Gel P-2 resin. A total of 16 reduced oligosaccharides were identified by thin layer chromatography. These included neutral, sialylated, and sulfated oligosaccharides and they varied in size from a disaccharide to a nonasaccharide. The major neutral oligosaccharide isolated (21% of recovered GalNAcol) was a tetrasaccharide, Gal:GlcNAc:GalNAcol = 2:1:1, and the major acidic oligosaccharide isolated (11% of recovered GalNAcol) was a trisaccharide, Gal:GalNAcol:NeuAc = 1:1:1.  相似文献   

14.
Heating human erythrocyte ghosts with sodium dodecyl sulfate (SDS) at 100° was found to cause depolymerization of the major membrane glycoprotein. The molecular weight of the heat-induced product was found to be about half that of the precursor and to have an identical surface charge density in SDS. These findings were obtained by analysis of Ferguson plots derived from SDS- polyacrylamide gel electrophoresis in which the retardation coefficients and free mobilities of the two glycoprotein forms were compared. Based on these findings, we propose that previous conflicts regarding the molecular weight of this glycoprotein can be resolved by reference to the isolation and/or solubilization conditions.  相似文献   

15.
1. A high-molecular-weight glycoprotein constitutes over 80% by weight of the total glycoprotein from water-soluble pig colonic mucus. 2. It was isolated from from nucleic acid and non-covalently bound protein by nuclease digestion followed by equilibrium centrifugation in a CsCl gradient. 3. The glycoprotein has the following composition by weight: fucose 10.4%; glucosamine 23.9%; galactosamine 8.3%; sialic acid 9.9%; galactose 20.8%; sulphate 3.0%; protein 13.3%; moisture about 10%. 4. The native glycoprotein has the high mol.wt. of 15 X 10(6). 5. Reduction of the native glycoprotein with 2-mercaptoethanol results in a glycoprotein of mol.wt. 6 X 10(6). 6. Pronase digestion removes 29% of the protein (3% of the glycoprotein) but none of the carbohydrate. 7. The molecular weight of the Pronase-digested glycoprotein is 1.5 X 10(6), which is halved to 0.76 X 10(6) on reduction with 2-mercaptoethanol. 8. The contribution of non-covalent interactions, disulphide bridges and the non-glycosylated peptide core to the quaternary structure of the glycoprotein are discussed and compared with the known structure of pig gastric glycoportein.  相似文献   

16.
Developmental changes of ferret tracheal mucin composition and biosynthesis   总被引:1,自引:0,他引:1  
M W Leigh  P W Cheng  T F Boat 《Biochemistry》1989,28(24):9440-9446
We characterized the chemical composition of mucins secreted by ferret tracheal explants and the activities of key mucin glycosyltransferases in ferret tracheal epithelium during a period of rapid postnatal maturation of the mucin-secreting structures. Ferret tracheal explants secrete three major groups of high molecular weight glycoconjugates: (1) those susceptible to bovine testicular hyaluronidase; (2) those resistant to hyaluronidase and exhibiting high density (p greater than or equal to 1.60 g/mL); and (3) those resistant to hyaluronidase and exhibiting low density (1.45 less than or equal to p less than 1.60 g/mL). The hyaluronidase-resistant, low-density glycoconjugates have typical mucin properties and constitute 36% of total glycoconjugates released in newborns but only 8% in adult ferrets. Mucin secretory rate per unit surface area of trachea progressively decreases with age. Mucin amino acid and total carbohydrate contents do not vary; however, the sialic acid content increases, and fucose content as well as blood group A activity of the mucins decreases with age. Four glycosyltransferases involved in mucin biosynthesis [Gal beta 3GalNAc:(GlcNAc-GalNAc)beta 6 N-acetylglucosaminyl-, GalNAc:beta 3 galactosyl-, Gal:alpha 2 fucosyl-, and GalNAc alpha 2----6 neuraminyltransferase] are present in tracheal epithelium of ferrets at all ages. Activities of all but the neuraminyltransferase decrease with age. The relatively greater neuraminyltransferase activity is consistent with increased incorporation of sialic acid into secreted mucins over the same age span. Conversely, diminution of fucosyltransferase relative to galactosyltransferase activity may contribute to the lower fucose content and lower blood group A activity of mucins secreted by mature ferret tracheas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Two populations of tryptic peptides were isolated from bovine estrus cervical mucin (BCM). One contained all the carbohydrate, and was rich in threonine and serine. These glycopeptides had, like the whole mucin, alanine as their NH2-terminal residues. Their COOH-terminal residues were arginine. The second population of peptides was rich in carboxylic amino acids, contained two cysteinyl residues, and had, like the whole mucin, leucine as COOH-terminal residues. Their NH2-terminal residues were aspartic acid. The sum of the residues of one glycopeptide plus one cysteinyl-containing peptide corresponded to the number of residues constituting a putative subunit of BCM. The amino acid sequence of the major cysteinyl peptide was determined. A cluster of hydrophobic residues was found in the COOH-terminal region. The amino acid sequences of two of the glycopeptides were found identical up to the 22nd residue. The small number of tryptic peptides, as well as the large amount of NH2- and COOH-terminal amino acids found in BCM indicate that this glycoprotein is made up of similar subunits with a molecular weight of about 22,000, one of the glycopeptides representing the NH2-terminal part, and one of the cysteinyl peptides, the COOH-terminal part. However, the existence of these subunits was not confirmed by ultracentrifugation of BCM in dithiothreitol and sodium dodecyl sulfate. BCM was polydisperse and had a mean molecular weight of 507,000.  相似文献   

18.
A high-molecular-weight glycoprotein has been purified from the cervical mucus of the bonnet monkey (Macaca radiata). The glycoprotein was shown to be homogeneous by electrophoresis, sedimentation equilibrium, and N-terminal group determination, and to contain 19% protein, 19% D-galactose, 18% N-acetyl-D-galactosamine, 15% N-acetyl-D-glucosamine, 11% L-fucose, 10% sialic acid, and 1% sulfate groups, corresponding to about 1800 amino acid residues and 400 carbohydrate side chains of about 9 monosaccharides. The carbohydrate chains are linked to the peptide backbone through N-acetyl-D-galactosamine and serine (or threonine) residues. Reduction with dithiothreitol and alkylation with iodoacetic acid reduced the molecular mass from 1 to 0.5 X 10(6) daltons and produced subunits having the same size, charge, and N-terminal amino acid. Electrophoretic studies suggested the presence of disulfide bonds between two chains of the glycoprotein. Degradation with alkaline borohydride gave, after fractionation on Bio-Gel P-2, fractions containing L-fucose, D-galactose, N-acetyl-D-galactosaminitol, N-acetyl-D-galactosamine, N-acetyl-D-glucosamine, and sialic acid in the ratio of 1.0:3.0:1.0:1.0:1.3:1.0. Further fractionation by electrophoresis and paper chromatography gave a charged fraction representing 13% of the original glycoprotein. Enzymic degradation and methylation studies indicated the presence of the structure alpha-Gal-(1 leads to 3)-[Fuc(1 leads to 2)]-Gal-(1 leads to 4)-GlcNAc, linked to a core component containing N-acetyl-D-galactosaminitol.  相似文献   

19.
A chondroitin sulfate - dermatan sulfate proteoglycan was isolated from bovine aorta intima by extraction of the tissue by 4 M guanidine hydrochloride. The proteoglycan was purified by CsCl isopycnic centrifugation followed by gel filtration and ion-exchange chromatography. The proteoglycan had 21.9% protein, 22.1% uronate, 21.4% hexosamine and 10.8% sulfate. Glycosaminoglycan chains obtained from the proteoglycan by β-elimination were resolved by gel filtration into two fractions, one containing chondroitin 6-sulfate with an approximate molecular weight of 49 000 and the other containing chondroitin 4-sulfate and dermatan sulfate in a proportion of 2:1 with an approximate molecular weight of 37 000. Digestion of the proteoglycan by chondroitinase ABC or AC yielded a protein core with similar composition and behavior in gel filtration and SDS-polyacrylamide gel electrophoresis. An approximate molecular weight of 180 000 was estimated for the core protein. Dermatan sulfate chains with an approximate molecular weight of 10 000 were observed only in the digest of chondroitinase AC. Limited trypsin hydrolysis of the proteoglycan yielded three peptide fragments containing chondroitin 6-sulfate, chondroitin 4-sulfate and dermatan sulfate in varied proportions. A tentative structure for the proteoglycan was suggested.  相似文献   

20.
Purification and properties of Arthrobacter neuraminidase   总被引:2,自引:0,他引:2  
Neuraminidase (EC 3.2.1.18) from an Arthrobacter species was purified homogeneity by conventional procedures (yield approx. 1 mg/1) and was judged to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Gel electrofocusing of neuraminidase revealed 1 major band (85-90%), pI 5.35 +/- 0.05, and 6 minor bands, whose pI ranged from 5.25 to 5.70, and each of which had catalytic activity. Arthrobacter neuraminidase is a monomeric glycoprotein of molecular weight 88 000, has an apparent Km of 7.8-10(-4) M for N-acetylneuraminlactose, is insensitive to inhibition by N-acetylneuraminic acid, and is about 2% carbohydrate by weight. The amino acid composition as well as the galactosamine and glucosamine content was determined. The enzyme can hydrolyze (alpha, 2-3), (alpha, 2-6), (alpha, 2-8) linkages. The active size of the enzyme appears to be inaccessible since no inhibition was observed by reagents known to modify sulfhydryl, lysyl, carboxyl, histidinyl, and argininyl residues. In contrast, N-bromosuccinimide at a 60-fold molar ratio to enzyme, gave complete inhibition. These results suggest that a tryptophan residue is essential for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号