首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
胡萝卜及其愈伤组织细胞质Ca~(2 )水平分析的研究   总被引:1,自引:0,他引:1  
为测定植物细胞质内[Ca~(2 )]_i,对胡萝卜(Daucus carota var.sativa DC.)原生质体制备介质做了改进,并在正常生理条件下,用温和的、非损伤性的方法将Ca~(2 )荧光指示剂indo-1 K~ 和fura-2 K~ 导入该原生质体,能很好地标记细胞质内的游离Ca~(2 )。在此基础上,用显微荧光光度单波法测定被标记原生质体单个细胞胞质[Ca~(2 )]_i。结果表明:被indo-1 K~ 标记的胡萝卜及其愈伤组织的原生质体[Ca~(2 )]_i分别为88.3nmol/L和263.0nmol/L;fura-2 K~ 标记的分别为99.9nmol/L和255.5nmol/L。由此可见,脱分化的、处在细胞周期中的愈伤组织细胞质中[Ca~(2 )]_i远高于分化了的、处于静息态的胡萝卜细胞。此外,为了确认测量的可靠性,对两种Ca~(2 )荧光指示剂分别做了体外校正,证明其线性相关。  相似文献   

2.
实验研究了在胡萝卜、烟草愈伤组织形成过程中,激素诱导作用与钙离子的关系。结果表明:在含有正常浓度的激素和Ca~(2+)的培养基中,0.1—1mmol/L Ca~(2+)螯合剂EGTA抑制愈伤组织鲜重增长78.0%—88.4%; 10—50μmol/L尼群地平及10—60μmol/L异博定等细胞膜钙通道阻断剂分别抑制愈伤组织鲜重增长19.1%—81.9%及17.6%—70.3%。除去上述Ca~(2+)螯合剂及Ca~(2+)通道阻断剂后,受抑制的外植体基本上可恢复生长。在无激素培养基中,10—30μmol/L Ca~(2+)载体A_(23187)可使外植体膨大,使外植体脱分化细胞增多,并出现分生细胞团,初步说明A_(23187)诱导的Ca~(2+)内流可以部分地模拟激素的作用。以膜显示剂氯四环素探测胞内Ca~(2+)分布时发现分裂细胞、脱分化细胞、分生细胞团及愈伤组织区域的细胞荧光较强。以上事实说明在愈伤组织形成中激素诱导效应与细胞内Ca~(2+)有密切关系。  相似文献   

3.
用荧光染料FIuo-3标记人肝癌细胞株H_(7402)细胞内游离钙,在粘附式细胞仪观察检测单个细胞内游离钙水平的动态变化,细胞在无钙环境中,直接溶解因子(DLF)刺激下细胞内游离钙迅速升高,达到峰值后下降;在细胞培养皿中加入1mmol/L CaCl_2,DLF使胞浆游离钙持续升高;加入10mmol/L CaCl_2,DLF刺激后胞浆游离钙水平无明显变化,表明DLF能引起胞内Ca~(2 )释放和胞外Ca~(2 )内流,细胞外高浓度Ca~(2 )能阻断DLF升高细胞内Ca~(2 )浓度的 作用。  相似文献   

4.
外源Ca^2+对烟草花粉管生长和生殖核分裂的调节   总被引:16,自引:2,他引:14  
用细胞学和统计学方法研究了外源Ca~(2 )对烟草(Nicotiana tabacum L.)离体花粉管生长和生殖核分裂的影响。正常培养条件下,花粉管群体内的生殖核分裂率大致呈对数增长,10~18h为其分裂高峰期。所用Ca~(2 )浓度中以10~(-3)mol/L最适于花粉管生长,与之相比,其它浓度随时间延长愈益明显地表现出抑制效应。生殖核分裂则以10~(-2)与10~(-3)mol/L较为适宜,且10~(-2)mol/L可相对提前分裂高峰。在含10~(-3)mol/L Ca~(2 )培养基中培养10h后用不同方法处理,发现高钙抑制花粉管生长,尤以10~(-1)mol/L Ca~(2 )抑制最强烈,导致花粉管顶端壁加厚及生殖核的无丝分裂。而10~(-2)mol/L Ca~(2 )在处理早期(10~12h)促进生殖核分裂。EGTA处理则同时抑制花粉管生长和生殖核分裂。  相似文献   

5.
本工作首先利用《复杂络合平衡体系》计算并配制了对自由钙离子浓度具有络合平衡缓冲能力的MS液体培养基,并用电极法验证了其可靠性。在精确控制Ca~(2 )浓度条件下,利用计数法和~3H-TdR标记DNA合成的方法系统研究了不同钙离子浓度对白芷悬浮细胞及原生质体细胞增殖的影响。原生质体第一次细胞分裂所需Ca~(2 )浓度(10mmol/L)比细胞增殖所需Ca~(2 )浓度(1mmol/L)为高;不同钙离子浓度对原生质体壁再生、活力及第一次细胞分裂的作用也不一样,壁再生所需最适Ca~(2 )浓度为50mmol/L,原生质体存活以及第一次细胞分裂所需最适Ca~(2 )浓度为5—10 mmol/L,当Ca~(2 )浓度小于10~(-4)mol/L时细胞及原生质体的增殖受到很大程度的抑制,细胞死亡数目较多。结果表明介质钙离子浓度与细胞及原生质的增殖密切相关。  相似文献   

6.
砷诱导蚕豆气孔保卫细胞死亡的毒性效应   总被引:2,自引:0,他引:2  
薛美昭  仪慧兰 《生态学报》2014,34(5):1134-1139
采用蚕豆(Vicia faba L.)叶面气孔保卫细胞,研究砷对细胞的毒性效应。结果表明,0.3—10 mg/L的NaAsO_2能降低保卫细胞活性,使部分细胞死亡,死亡率随砷浓度升高而增高。死细胞中呈现核固缩、核崩解等典型程序性死亡特征,且泛caspase抑制剂Z-Asp-CH_2-DCB能阻止NaAsO_2诱发的细胞死亡。过氧化氢清除剂过氧化氢酶与NaAsO_2共同作用时,细胞死亡率显著低于砷单独处理组,保卫细胞内Ca~(2+)水平降低,具程序性死亡特征的细胞数减少;Ca~(2+)特异性螯合剂EGTA亦能降低NaAsO_2诱发的细胞死亡。研究结果表明,NaAsO_2能诱发蚕豆保卫细胞程序性死亡,该过程由胁迫引发的ROS升高引起,ROS可能通过激活质膜Ca~(2+)通道,使胞外Ca~(2+)内流,造成胞内Ca~(2+)浓度升高,进而诱导细胞程序性死亡。  相似文献   

7.
迄今为止研究的所有动物卵子在受精时都有一个共同的现象,即胞质游离Ca~(2 )浓度升高,从静息状态的40—100nmol/L升高至600—1000nmol/L水平,并以波的形式从精卵结合点向卵子的其他部位扩展。在哺乳类受精诱导的Ca~(2 )浓度变化表现为有规律的跃升,即Ca~(2 )波动或振荡。受精诱导的Ca~(2 )波动可持续达数小时之久,直至原核形成时才消失。小鼠卵受精诱导Ca~(2 )波动的特点是:第1峰高而宽,峰值达617.7±143.5nmol/L,峰宽220.1±43.3sec。将第1峰放大后可观察到许多锯齿状小峰(图1)。第1峰之后Ca~(2 )波动的  相似文献   

8.
采用改进的焦锑酸钙沉淀的细胞化学方法,探讨了Ca~(2 )在黄瓜幼苗细胞中超微结构定位分布及在低温逆境条件下Ca~(2 )水平的动态。结果表明:在适宜温度下生长的黄瓜幼苗,其细胞中Ca~(2 )主要定位于液泡及细胞间隙内,说明液泡是植物细胞内的主要钙库;并显示质外体中存在大量的Ca~(2 )分布。当黄瓜幼苗在1℃下冷胁迫28h后,质膜内侧钙沉淀颗粒明显增加,同时观察到液泡内Ca~(2 )分布变得比较集中,并趋向于液泡膜内侧。当幼苗在1℃低温下胁迫40h后,胞内Ca~(2 )水平进一步提高,尤其是质膜内侧及细胞核内出现较大的呈同心圆状的钙沉淀颗粒。作者认为,胞内Ca~(2 )水平的提高,尤其是质膜内侧及细胞核内局部区域Ca~(2 )密集分布,势必会引发一系列代谢过程的紊乱,最终导致幼苗的伤害或死亡。  相似文献   

9.
研究核外Ca~(2+)浓度对核Ca~(2+)的影响,及细胞核Ca~(2+)摄取和释放的关系,以探讨核Ca~(2+)转运的调节机制。采用差速离心和密度梯度离心法分离纯化心肌细胞核,以Fluo-4/AM荧光指示剂负载心肌细胞核,应用激光共聚焦扫描显微镜和荧光分光光度计进行观察和测定。结果显示,分离纯化的成年大鼠心肌细胞核内自由[Ca~(2+)]随着核外[Ca~(2+)]的增加而逐渐增加,孵育液[Ca~(2+)]为1000 nmol/L达高峰,但二者增加的程度并不一致,之后随核外[Ca~(2+)]浓度的增加而呈降低趋势。ATP和100—600nmol/L的核外游离Ca~(2+),使心肌细胞核显示核被膜腔Ca~(2+)荧光,ATP和1000nmol/L的核外游离Ca~(2+)则进一步引起核浆内的Ca~(2+)荧光强度升高。荧光染色观察可见IP_3受体染色主要位于核内膜,而钙泵和ryanodine受体染色主要位于核外膜。IP_3和Ryancodine使核Ca~(2+)短暂升高1.68倍和1.93倍(P<0.001),而钙泵抑制剂Thapsigargin和IP_3受体抑制剂Heparin则分别使核Ca~(2+)降低64%和35.6%(p<0.05)。ryanodine使IP_3升高的核Ca~(2+)显著回落至正常水平以下(p<0.001)。Thapsigargin不能阻断IP_3和Ryanodine所致的核Ca~(2+)释放增加(p<0.05),但事先采用钙泵抑制剂Thapsigargin预处理心肌细胞核,则能显著的阻断IP_3和Ryanodine所致的核Ca~(2+)升高作用(Ca~(2+)释放作用)(p<0.05)。结果提示大鼠心肌细胞核可能也是细胞内的钙库之一,心肌细胞核上存在Ca~(2+)-ATPase、ryanodine受体和IP_3受体等Ca~(2+)转运系统,可能参与核Ca~(2+)摄取和释放的调节。  相似文献   

10.
大鼠心肌线粒体Ca2+-ATP酶的制备及活性测定   总被引:10,自引:0,他引:10  
Ca~(2 )在细胞内有许多重要的功能,它参与不同酶系和多种类型细胞活动的调节。细胞内Ca~(2 )的这些功能需很低的Ca~(2 )浓度(μmol/L或更低),维持细胞浆低Ca~(2 )浓度是与细胞Ca~(2 )调节装置有关,心肌细胞的这类装置包括肌膜、肌浆网、线粒体以及一些与Ca~(2 )结合的蛋白(如钙调素)和小分子物质,其中线粒体是重要的机构之一。Vasington等首次报道了肾脏线粒体对Ca~(2 )的摄取作用,并注意到这一过  相似文献   

11.
分别用含10、20、40、60μmol/L的菹草类胡萝卜素提取物(CEPC)培养液处理人肝癌细胞(QGY-7703)48h、96h和144h,在这三个处理时间各剂量组对肝癌细胞的抑制率平均值范围分别为0.14%-23.07%、39.59%-70.61%和71.65%-87.01%。经10、20和40μmol/L的CEPC培养液处理肝癌细胞24h、48h和72h,用激光扫描共聚焦显微术(LSCM)观察细胞形态,出现了肝癌细胞数量明显减少,细胞体积缩小、皱缩变形,细胞核呈现“新月状”、条状甚至碎片状,细胞核中呈黄色的DNA面积较明显地减小等典型的凋亡细胞形态特征。以流式细胞术分析用CEPC处理肝癌细胞后各时相细胞的百分比,与对照组比较,用10μmol/L和20μmol/L浓度的CEPC处理肝癌细胞48h后,使细胞周期中的G_0/G_1期的细胞比例极显著增加(P<0.01),分别增加了23.8%和35.6%,而在G_2/M期没有明显的变化,在S期则相应减少。用LSCM测定了肝癌细胞内的Ca~(2 )浓度,与对照组比较,经20μmol/LCEPC处理48h后能引起细胞内Ca~(2 )浓度极显著上升(P<0.01),剂量组细胞内Ca~(2 )荧光强度为对照组的1.5倍。以上结果表明CEPC对人肝癌细胞QGY-7703的增殖具有明显的抑制作用,且在一定程度上呈时间-效应和剂量-效应依赖关系。在较短的时间内及使用较小的CEPC剂量能有效地诱导肝癌细胞凋亡,CEPC使肝癌细胞阻滞于G_0/G_1期发生凋亡。CEPC能极显著提高肝癌细胞内的Ca~(2 )浓度,提示Ca~(2 )浓度升高可能是CEPC诱导肝癌细胞发生调亡的重要原因。本项研究结果为进一步研究和开发菹草类胡萝卜素的功能和价值打下了重要基础。  相似文献   

12.
钙是人和动物体液中的重要离子成份,血清中钙含量约2.5×10~(-3)mol/L,其中半数呈离子状态。细胞内液Ca~(2 )浓度一般低于10~(-6)mol/L(1μmol/L),浓度下降或上升过多都会引起细胞机能活动失常,甚至导致细胞死亡。 20多年前就已认识到钙是一种调节细胞功能的重要物质,例如肌肉收缩、染色体在细胞分裂时的滑动、精子运动、血小板变形和分泌、白细胞的吞噬作用、淋巴细胞的分裂以及神经末梢递质释放等功能均与Ca~(2 )调节有关。此外,Ca~(2 )也参与许多代谢反应的调节。  相似文献   

13.
在胞内钙信使的研究中,使低钙浓度溶液(<10~(-3)mol/L)的计算与配制十分重要。wolf曾对Ca~(2 )-EDTA或Ca~(2 )-EGTA缓冲体系中,在预定的EDTA或EGTA浓度下(如1mmol/L),根据所加入的总钙浓度[Ca~(2 )]_r,提出了所得缓冲体系中低  相似文献   

14.
本文应用荧光钙测定技术观察了血管紧张素Ⅱ(AⅡ)对新生Wistar鼠脑细胞胞浆Ca~(2+)浓度([Ca~(2+)]_i)的影响。结果表明:血管紧张素Ⅱ在1nmol/L—1μmol/L浓度下可诱导新生鼠脑细胞[Ca~(2+)]_i增加,具量效关系。在无外Ca~(2+)存在对,其增加幅度有所减少。上述效应可被血管紧张素Ⅱ拮抗剂Saralasin所阻断,并呈剂量依赖关系。上述结果提示,血管紧张素Ⅱ可激活血管紧张素AⅡ受体,增加脑细胞[Ca~(2+)]_i,该效应通过细胞内Ca~(2+)释放和细胞外Ca~(2+)内流两条适径实现,前者的作用是主要的。  相似文献   

15.
神经肌肉接头及神经节N受体均可引起细胞外Ca~(2 )内流和细胞内Ca~(2 )释放,增加细胞内Ca~(2 )浓度。尚无资料证明脑N受体是否影响细胞内Ca~(2-)浓度。本实验观察烟碱对脑细胞内Ca~(2 )浓度的影响并探讨其可能的机理。 烟碱对大鼠脑突触体主动摄取~(45)Ca~(2 )的影响 本实验条件下钙通道激动剂Bay-k-8644(10~(-7)~10~(-4)~mol/L)浓度依赖性地增加突触体~(45)Ca~(2 )主动摄取量;钙通道拮抗剂异搏定(10~(-9)~10~(-5)mol/L)浓度依赖性地抑制~(45)Ca~(2 )摄取  相似文献   

16.
为研究金属离子对天冬氨酸酶基因工程菌催化合成L-天冬氨酸的影响,以富马酸为底物,分别添加K~+、Mg~(2+)、Mn~(2+)、Ca~(2+)四种金属离子,利用天冬氨酸酶基因工程菌催化合成L-天冬氨酸。结果表明,K+浓度0~2.5 mmol/L时,对L-天冬氨酸的合成没有影响,K+浓度超过2.5 mmol/L时会抑制L-天冬氨酸的合成;Mg~(2+)、Mn~(2+)、Ca~(2+)对L-天冬氨酸合成量影响均呈现先促进后抑制,L-天冬氨酸合成量达到高峰时,Mg~(2+)、Mn~(2+)、Ca~(2+)浓度分别是10 mmol/L、8 mmol/L和11 mmol/L;与对照相比Mn~(2+)促进作用最强,L-天冬氨酸合成量增幅为192.0%。本研究结果可为L-天冬氨酸的工业化生产提供参考。  相似文献   

17.
【目的】研究青霉素V生产过程中—Ca~(2+)信号转导途径参与产黄青霉菌对外源侧链前体苯氧乙酸的应答机制。【方法】考察4种不同机制的Ca~(2+)信号干扰剂[利心平、乙二醇双(2-氨基乙基醚)四乙酸、苏拉明和硫酸新霉素]对青霉素V产量和产黄青霉菌生物量的影响。运用Fluo-3/AM荧光染料对细胞进行染色,通过荧光显微镜成像和酶标仪定量检测两种方法监测胞内Ca~(2+)浓度的变化。【结果】苯氧乙酸添加后胞内Ca~(2+)相对含量高于对照组49.86%,而1 mmol/L磷酸酯酶C底物抑制剂硫酸新霉素的添加使得胞内Ca~(2+)相对含量降低了53.31%,同时青霉素V产量降低78.71%,表明产黄青霉菌可通过肌醇1,4,5-三磷酸信号途径调节胞内Ca~(2+)浓度来响应苯氧乙酸的胁迫。【结论】首次探究了Ca~(2+)信号转导途径在产黄青霉菌对苯氧乙酸应答中的作用,为丝状真菌中Ins(1,4,5)P3-Ca~(2+)信号转导途径的研究提供理论依据。  相似文献   

18.
为了探讨内向整流钾通道(inward rectifier K~+channels,K_(ir))阻滞剂BaCl_2引起大鼠冠状动脉(rat coronary artery,RCA)收缩的作用机制,本研究采用离体微血管环张力记录法观察BaCl_2引起的RCA收缩对细胞内Ca~(2+)([Ca~(2+)]_i)释放和细胞外Ca~(2+)([Ca~(2+)]_o)内流的依赖性,并通过抑制剂实验探讨其作用机制。结果显示,静息状态下,BaCl_2(0.1~1.0 mmol/L)浓度依赖性地收缩离体RCA,最大收缩幅度为(5.69±1.07)m N,与KCl(60 mmol/L)收缩幅度相近;BaCl_2在无钙液中所引起的收缩占其总收缩的(35.44±6.72)%,复钙进一步引起(64.56±5.94)%的收缩;钙通道阻滞剂硝苯地平(0.3μmol/L)、环氧合酶抑制剂吲哚美辛(100μmol/L)、细胞外信号调节激酶ERK1/2抑制剂PD98059(10μmol/L)和氯通道阻滞剂尼氟灭酸(100μmol/L)分别使BaCl_2引起的RCA最大收缩幅度降低(87.82±5.43)%(P0.01)、(73.23±5.47)%(P0.01)、(75.69±7.94)%(P0.01)和(83.24±7.69)%(P0.01)。上述实验结果表明,BaCl_2引起RCA收缩依赖于[Ca~(2+)]_i释放和[Ca~(2+)]_o内流,并提示该过程与增加前列腺素类物质合成、钙通道和氯通道激活及ERK1/2通路有关。  相似文献   

19.
以粟酒裂殖酵母(Schizosaccharomyces pombe)为研究材料,研究了Ca~(2+)在细胞周期时相中的作用。当外源Ca~(2+)浓度在0.5-20 mmol/L范围内,随Ca~(2+)浓度增加,细胞增殖速度加快,延滞期逐渐缩短。但SD-Ca(CaCl2省略)并不能终止Sch. pombe的细胞周期。采用缺氮对群体细胞进行同步化,并以EGTA 螯合培养介质中低浓度的Ca~(2+),Sch. pombe 细胞增殖被完全抑制,细胞流式法测定结果表明:细胞周期被终止在G1期。分析认为Ca~(2+) 对Sch. pombe 细胞增殖是必不可少的,外源Ca~(2+)在G1期向S期转化过程中起着关键性的作用。  相似文献   

20.
在外源性次黄嘌呤和黄嘌呤氧化酶的作用下,培养神经细胞发生肿胀、破碎和K~ 丢失等损伤性变化。当细胞外葡萄糖由5mmol/L降至2.5mmol/L及Ommol/L时,K~ 丢失分别增加1.4倍及7.8倍。若同时加入谷氨酸盐1mmol/L或N-甲基-D-天冬氨酸(NMDA)0.4mmol/L,K~ 丢失增高3倍。提高Mg~(2 )浓度至2.5mmol/L或加入DL-2-氨基-5-磷戊酸0.5mmol/L均可阻断谷氨酸盐对自由基损伤的增强作用。提示脑缺血,缺氧时,兴奋性氨基酸通过激动NMDA受体,使Ca~(2 )内流增加,从而加重自由基损伤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号