首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human protein apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3G (APOBEC3G), also known as CEM-15, mediates a newly described form of innate resistance to retroviral infection by catalyzing the deamination of deoxycytidine to deoxyuridine in viral cDNA replication intermediates. Because DNA deamination takes place after virus entry into target cells, APOBEC3G function is dependent on its association with the viral nucleoprotein complexes that synthesize cDNA and must therefore be incorporated into virions as they assemble in infected cells. Here we show that the HIV-1 virion infectivity factor (Vif) protein protects the virus from APOBEC3G-mediated inactivation by preventing its incorporation into progeny virions, thus allowing the ensuing infection to proceed without DNA deamination. In addition to helping exclude APOBEC3G from nascent virions, Vif also removes APOBEC3G from virus-producing cells by inducing its ubiquitination and subsequent degradation by the proteasome. Our findings indicate that pharmacologic strategies aimed at stabilizing APOBEC3G in HIV-1 infected cells should be explored as potential HIV/AIDS therapeutics.  相似文献   

2.
APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(−) T cells and had an IC50 as low as 8.4 μm and a TC50 of >100 μm when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 μm). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.  相似文献   

3.
Although the physiological role of APOBEC2 is still largely unknown, a crystal structure of a truncated variant of this protein was determined several years ago [Prochnow, C. (2007) Nature445, 447-451]. This APOBEC2 structure had considerable impact in the HIV field because it was considered a good model for the structure of APOBEC3G, an important HIV restriction factor that abrogates HIV infectivity in the absence of the viral accessory protein Vif. The quaternary structure and the arrangement of the monomers of APOBEC2 in the crystal were taken as being representative for APOBEC3G and exploited in explaining its enzymatic and anti-HIV activity. Here we show, unambiguously, that in contrast to the findings for the crystal, APOBEC2 is monomeric in solution. The nuclear magnetic resonance solution structure of full-length APOBEC2 reveals that the N-terminal tail that was removed for crystallization resides close to strand β2, the dimer interface in the crystal structure, and shields this region of the protein from engaging in intermolecular contacts. In addition, the presence of the N-terminal region drastically alters the aggregation propensity of APOBEC2, rendering the full-length protein highly soluble and not prone to precipitation. In summary, our results cast doubt on all previous structure-function predictions for APOBEC3G that were based on the crystal structure of APOBEC2.  相似文献   

4.
MYO18B is a class XVIIIB unconventional myosin encoded by a candidate tumor suppressor gene. To gain insights into the cellular function of this protein, we searched for MYO18B-interacting proteins by a yeast two-hybrid screen. Sug1, a 19S regulator subunit of the 26S proteasome, was identified as a binding partner of the C-terminal tail region of MYO18B. The association of MYO18B with Sug1 was further confirmed by GST pull-down, co-immunoprecipitation, and immunocytochemistry. Furthermore, proteasome dysfunction by a proteasome inhibitor or siRNA-mediated knock-down of Sug1 caused the up-regulation of MYO18B protein and MYO18B was polyubiquitinated in vivo. Collectively, these results suggested that MYO18B is a substrate for proteasomal degradation.  相似文献   

5.
6.
He LQ  Cai F  Liu Y  Liu MJ  Tan ZP  Pan Q  Fang FY  Liang de S  Wu LQ  Long ZG  Dai HP  Xia K  Xia JH  Zhang ZH 《Cell research》2005,15(6):455-464
INTRODUCTION Gap junctions consisting of connexins, are able tomediate cell-cell communication via direct exchange ofintercellular small molecules (< 1 kD). Generally, gap junc-tions are formed by homomeric or heteromeric hemi-channels that are assembled …  相似文献   

7.
8.
The human proteins APOBEC3F and APOBEC3G restrict retroviral infection by deaminating cytosine residues in the first cDNA strand of a replicating virus. These proteins have two putative deaminase domains, and it is unclear whether one or both catalyze deamination, unlike their homologs, AID and APOBEC1, which are well characterized single domain deaminases. Here, we show that only the C-terminal cytosine deaminase domain of APOBEC3F and -3G governs retroviral hypermutation. A chimeric protein with the N-terminal cytosine deaminase domain from APOBEC3G and the C-terminal cytosine deaminase domain from APOBEC3F elicited a dinucleotide hypermutation preference nearly indistinguishable from that of APOBEC3F. This 5'-TC-->TT mutational specificity was confirmed in a heterologous Escherichia coli-based mutation assay, in which the 5'-CC-->CT dinucleotide hypermutation preference of APOBEC3G also mapped to the C-terminal deaminase domain. An N-terminal APOBEC3G deletion mutant displayed a preference indistinguishable from that of the full-length protein, and replacing the C-terminal deaminase domain of APOBEC3F with AID resulted in an AID-like mutational signature. Together, these data indicate that only the C-terminal domain of APOBEC3F and -3G dictates the retroviral minus strand 5'-TC and 5'-CC dinucleotide hypermutation preferences, respectively, leaving the N-terminal domain to perform other aspects of retroviral restriction.  相似文献   

9.
Li X  Lonard DM  Jung SY  Malovannaya A  Feng Q  Qin J  Tsai SY  Tsai MJ  O'Malley BW 《Cell》2006,124(2):381-392
Steroid receptor coactivator-3 (SRC-3/AIB1) is an oncogene frequently amplified and overexpressed in breast cancers. Here we report that SRC-3 interacts with REGgamma, a proteasome activator known to stimulate the trypsin-like activity of the 20S proteasome. RNAi knockdown and gain-of-function experiments suggest that REGgamma promotes SRC-3 protein degradation. Cellular levels of REGgamma expression affect estrogen-receptor target-gene expression and cell growth as a result of its ability to promote degradation of the SRC-3 protein. In vitro proteasome proteolysis assays using purified REGgamma, SRC-3, and the 20S proteasome reinforce these conclusions and demonstrate that REGgamma promotes the degradation of SRC-3 in a ubiquitin- and ATP-independent manner. This work demonstrates the first example of a physiologically relevant endogenous cellular target for the REGgamma-proteasome complex. It also highlights the fact that an alternative mode of proteasome-mediated protein degradation, independent of the 19S proteasome regulatory cap, targets the SRC-3 protein for degradation.  相似文献   

10.

Background

The incorporation of human APOBEC3G (hA3G) into HIV is required for exerting its antiviral activity, therefore the mechanism underlying hA3G virion encapsidation has been investigated extensively. hA3G was shown to form low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. The function of different forms of hA3G in its viral incorporation remains unclear.

Methodology/Principal Findings

In this study, we investigated the subcellular distribution and lipid raft association of hA3G using subcellular fractionation, membrane floatation assay and pulse-chase radiolabeling experiments respectively, and studied the correlation between the ability of hA3G to form the different complex and its viral incorporation. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.

Conclusions/Significance

Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.  相似文献   

11.
Viruses must overcome diverse intracellular defense mechanisms to establish infection. The Vif (virion infectivity factor) protein of human immunodeficiency virus 1 (HIV-1) acts by overcoming the antiviral activity of APOBEC3G (CEM15), a cytidine deaminase that induces G to A hypermutation in newly synthesized viral DNA. In the absence of Vif, APOBEC3G incorporation into virions renders HIV-1 non-infectious. We report here that Vif counteracts the antiviral activity of APOBEC3G by targeting it for destruction by the ubiquitin-proteasome pathway. Vif forms a complex with APOBEC3G and enhances APOBEC3G ubiquitination, resulting in reduced steady-state APOBEC3G levels and a decrease in protein half-life. Furthermore, Vif-dependent degradation of APOBEC3G is blocked by proteasome inhibitors or ubiquitin mutant K48R. A mutation of highly conserved cysteines or the deletion of a conserved SLQ(Y/F)LA motif in Vif results in mutants that fail to induce APOBEC3G degradation and produce non-infectious HIV-1; however, mutations of conserved phosphorylation sites in Vif that impair viral replication do not affect APOBEC3G degradation, suggesting that Vif is important for other functions in addition to inducing proteasomal degradation of APOBEC3G. Vif is monoubiquitinated in the absence of APOBEC3G but is polyubiquitinated and rapidly degraded when APOBEC3G is coexpressed, suggesting that coexpression accelerates the degradation of both proteins. These results suggest that Vif functions by targeting APOBEC3G for degradation via the ubiquitin-proteasome pathway and implicate the proteasome as a site of dynamic interplay between microbial and cellular defenses.  相似文献   

12.
APOBEC3G (A3G) is an effective cellular host defense factor under experimental conditions in which a functional form of the HIV-encoded protein Vif cannot be expressed. Wild-type Vif targets A3G for proteasomal degradation and when this happens, any host defense advantage A3G might provide is severely diminished or lost. Recent evidence cast doubt on the potency of A3G in host defense and suggested that it could, under some circumstances, promote the emergence of more virulent HIV strains. In this article, I suggest that it is time to recognize that A3G has the potential to act as a double agent. Future research should focus on understanding how cellular and viral regulatory mechanisms enable the antiviral function of A3G, and on the development of novel research reagents to explore these pathways.  相似文献   

13.
APOBEC3G (APO3G) is a cytidine deaminase that restricts replication of vif-defective human immunodeficiency virus type 1 (HIV-1). Like other members of the cellular deaminase family, APO3G has the propensity to form homo-multimers. In the current study, we investigated the functional determinants for multimerization of human APO3G and studied the role of APO3G multimerization for catalytic activity, virus encapsidation, and antiviral activity. We found that human APO3G is capable of forming multimeric complexes in transfected HeLa cells. Interestingly, multimerization of APO3G was exquisitely sensitive to RNase treatment, suggesting that interaction of APO3G subunits is facilitated or stabilized by an RNA bridge. Mutation of a conserved cysteine residue (C97) that is part of an N-terminal zinc-finger motif in APO3G abolished multimerization of APO3G; however, the C97 mutation inhibited neither in vitro deaminase activity nor antiviral function of APO3G. These results suggest that monomeric APO3G is both catalytically active and has antiviral activity. Interference studies employing either catalytically inactive or packaging-incompetent APO3G variants suggest that wild-type APO3G is packaged into HIV-1 particles in monomeric form. These results provide novel insights into the catalytic function and antiviral property of APO3G and demonstrate an important role for C97 in the RNA-dependent multimerization of this protein.  相似文献   

14.
C-Abl is a nonreceptor tyrosine kinase that is tightly regulated in the cell. Genetic data derived from studies in flies and mice strongly support a role for Abl kinases in the regulation of the cytoskeleton (reviewed in [1,2]). C-Abl can be activated by several stimuli, including oxidative stress [3], DNA damage [4], integrin engagement [5], growth factors, and Src family kinases [6]. Structural alterations elicit constitutive activation of the c-Abl tyrosine kinase, leading to oncogenic transformation. While the mechanisms that activate c-Abl are beginning to be elucidated, little is known regarding the mechanisms that downregulate activated c-Abl. Here, we show for the first time that activated c-Abl is downregulated by the ubiquitin-dependent degradation pathway. Activated forms of c-Abl are more unstable than wild-type and kinase-inactive forms. Moreover, inhibition of the 26S proteasome leads to increased c-Abl levels in vitro and in cells, and activated c-Abl proteins are ubiquitinated in vivo. Significantly, inhibition of the 26S proteasome in fibroblasts increases the levels of tyrosine-phosphorylated, endogenous c-Abl. Our data suggest a novel mechanism for irreversible downregulation of activated c-Abl, which is critical to prevent the deleterious consequences of c-Abl hyperactivation in mitogenic and cytoskeletal pathways.  相似文献   

15.
Dihydrotestosterone (DHT) decreases rat liver alcohol dehydrogenase (ADH) due principally to an increased rate of degradation of the enzyme. The pathway of degradation of ADH was investigated. Exposure of hepatocytes in culture to lactacystin or to MG132, which are inhibitors of the ubiquitin-proteasome pathway of protein degradation, resulted in higher ADH. Furthermore, both lactacystin and MG132 prevented the decrease in ADH caused by DHT. By contrast, the lysosomal proteolytic inhibitors 3-methyladenine and leupeptin as well as inhibitors of the calcium-activated neutral protease calpain system had no effect on ADH in the absence or presence of DHT. ADH isolated by immunoprecipitation from hepatocytes exposed to DHT reacted specifically with anti-ubiquitin antibody. Ubiquitinated ADH was also demonstrated in hepatocytes exposed to MG132. The combination of DHT and MG132 resulted in more ubiquitinated ADH than exposure to either compound alone. These results suggest that the ubiquitin-proteasome pathway plays a role in the degradation of ADH and in the enhanced degradation of this enzyme by DHT.  相似文献   

16.
Amyloid plaques are formed by aggregates of amyloid-beta-peptide, a 37-43-amino acid fragment (primarily Abeta(40) and Abeta(42)) generated by proteolytic processing of the amyloid precursor protein (APP) by beta- and gamma-secretases. A type I transmembrane aspartyl protease, BACE (beta-site APP cleaving enzyme), has been identified to be the beta-secretase. BACE is targeted through the secretory pathway to the plasma membrane where it can be internalized to endosomes. The carboxyl terminus of BACE contains a di-leucine-based signal for sorting of transmembrane proteins to endosomes and lysosomes. In this study, we set out to determine whether BACE is degraded by the lysosomal pathway and whether the di-leucine motif is necessary for targeting BACE to the lysosomes. Here we show that lysosomal inhibitors, chloroquine and NH(4)Cl, lead to accumulation of endogenous and ectopically expressed BACE in a variety of cell types, including primary neurons. Furthermore, the inhibition of lysosomal hydrolases results in the redistribution and accumulation of BACE in the late endosomal/lysosomal compartments (lysosome-associated membrane protein 2 (LAMP2)-positive). In contrast, the BACE-LL/AA mutant, in which Leu(499) and Leu(500) in the COOH-terminal sequence (DDISLLK) were replaced by alanines, only partially co-localized with LAMP2-positive compartments following inhibition of lysosomal hydrolases. Collectively, our data indicate that BACE is transported to the late endosomal/lysosomal compartments where it is degraded via the lysosomal pathway and that the di-leucine motif plays a role in sorting BACE to lysosomes.  相似文献   

17.
Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal (HNE), a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that HNE-modified proteins are degraded by the ubiquitin–proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that HNE-modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is degraded by an enzyme that is sensitive to a serine protease inhibitor, diisopropyl fluorophosphate (DFP), but not a proteasome inhibitor, MG-132, and that its degradation is not catalyzed in the acidic pH range where lysosomal enzymes are active. In the present study, we purified an HNE-modified GAPDH-degrading enzyme from a U937 cell extract to a final active fraction containing two proteins of 28 kDa (P28) and 27 kDa (P27) that became labeled with [3H]DFP. Using peptide mass fingerprinting and a specific antibody, P28 and P27 were both identified as cathepsin G. The degradation activity was inhibited by cathepsin G inhibitors. Furthermore, a cell extract from U937 cells transfected with a cathepsin G-specific siRNA hardly degraded HNE-modified GAPDH. These results suggest that cathepsin G plays a role in the degradation of HNE-modified GAPDH.  相似文献   

18.
Degradation of oxidized or oxidatively modified proteins is an essential part of the antioxidant defenses of cells. 4-Hydroxy-2-nonenal (HNE), a major reactive aldehyde formed by lipid peroxidation, causes many types of cellular damage. It has been reported that HNE-modified proteins are degraded by the ubiquitin–proteasome pathway or, in some cases, by the lysosomal pathway. However, our previous studies using U937 cells showed that HNE-modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is degraded by an enzyme that is sensitive to a serine protease inhibitor, diisopropyl fluorophosphate (DFP), but not a proteasome inhibitor, MG-132, and that its degradation is not catalyzed in the acidic pH range where lysosomal enzymes are active. In the present study, we purified an HNE-modified GAPDH-degrading enzyme from a U937 cell extract to a final active fraction containing two proteins of 28 kDa (P28) and 27 kDa (P27) that became labeled with [3H]DFP. Using peptide mass fingerprinting and a specific antibody, P28 and P27 were both identified as cathepsin G. The degradation activity was inhibited by cathepsin G inhibitors. Furthermore, a cell extract from U937 cells transfected with a cathepsin G-specific siRNA hardly degraded HNE-modified GAPDH. These results suggest that cathepsin G plays a role in the degradation of HNE-modified GAPDH.  相似文献   

19.
Hulme AE  Bogerd HP  Cullen BR  Moran JV 《Gene》2007,390(1-2):199-205
The non-LTR retrotransposon LINE-1 (L1) comprises  17% of the human genome, and the L1-encoded proteins can function in trans to mediate the retrotransposition of non-autonomous retrotransposons (i.e., Alu and probably SVA elements) and cellular mRNAs to generate processed pseudogenes. Here, we have examined the effect of APOBEC3G and APOBEC3F, cytidine deaminases that inhibit Vif-deficient HIV-1 replication, on Alu retrotransposition and other L1-mediated retrotransposition processes. We demonstrate that APOBEC3G selectively inhibits Alu retrotransposition in an ORF1p-independent manner. An active cytidine deaminase site is not required for the inhibition of Alu retrotransposition and the resultant integration events lack G to A or C to T hypermutation. These data demonstrate a differential restriction of L1 and Alu retrotransposition by APOBEC3G, and suggest that the Alu ribonucleoprotein complex may be targeted by APOBEC3G.  相似文献   

20.
HD-PTP (PTPN23) is a non-transmembrane protein tyrosine phosphatase which contributes to the signal transduction pathways involved in the regulation of cell migration and invasion. We here demonstrate in T24 bladder carcinoma cells that HD-PTP undergoes calcium-dependent degradation which can be prevented by specific calpain inhibitors. In addition, treatment of the cells with the calpain inhibitor calpeptin results in the redistribution of endogenous HD-PTP to the periphery of the cells. Since (i) calpains are overexpressed in some tumors and (ii) the downregulation of HD-PTP enhances cell migration and invasion, we propose that HD-PTP degradation by calpains might result in the acquisition of a more aggressive phenotype in neoplastic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号