首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An important role has emerged for adaptor molecules in linking cell-surface receptors, such as the B-cell antigen receptor, with effector enzymes. Adaptor proteins direct the appropriate subcellular localization of effectors and regulate their activity by inducing conformational changes, both of which, in turn, contribute to the spatio-temporal precision of B-cell signal-transduction events. In addition, adaptor molecules participate in establishing negative- or positive-feedback regulatory loops in signalling networks, thereby fine-tuning the B-cell response.  相似文献   

2.
3.
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains as well as a YXXQ motif in its C-terminal region. Our previous studies have demonstrated that STAP-2 binds to STAT3 and STAT5, and regulates their signaling pathways. In the present study, STAP-2 was found to positively regulate LPS/TLR4-mediated signals in macrophages. Disruption of STAP-2 resulted in impaired LPS/TLR4-induced cytokine production and NF-kappaB activation. Conversely, overexpression of STAP-2 enhanced these LPS/TLR4-induced biological activities. STAP-2, particularly its Src homology 2-like domain, bound to both MyD88 and IkappaB kinase (IKK)-alphabeta, but not TNFR-associated factor 6 or IL-1R-associated kinase 1, and formed a functional complex composed of MyD88-STAP-2-IKK-alphabeta. These interactions augmented MyD88- and/or IKK-alphabeta-dependent signals, leading to enhancement of the NF-kappaB activity. These results demonstrate that STAP-2 may constitute an alternative LPS/TLR4 pathway for NF-kappaB activation instead of the TNFR-associated factor 6-IL-1R-associated kinase 1 pathway.  相似文献   

4.
The CXCL12/CXCR4 signaling axis plays an important role in human health and disease; however, the molecular mechanisms mediating CXCR4 signaling remain poorly understood. Ubiquitin modification of CXCR4 by the E3 ubiquitin ligase AIP4 is required for lysosomal sorting and degradation, which is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. CXCR4 sorting is regulated by an interaction between endosomal localized arrestin-2 and STAM-1, an ESCRT-0 component. Here, we report a novel role for AIP4 and STAM-1 in regulation of CXCR4 signaling that is distinct from their function in CXCR4 trafficking. Depletion of AIP4 and STAM-1 by siRNA caused significant inhibition of CXCR4-induced ERK-1/2 activation, whereas overexpression of these proteins enhanced CXCR4 signaling. We further show that AIP4 and STAM-1 physically interact and that the proline-rich region in AIP4 and the SH3 domain in STAM-1 are essential for the interaction. Overexpression of an AIP4 catalytically inactive mutant and a mutant that shows poor binding to STAM-1 fails to enhance CXCR4-induced ERK-1/2 signaling, as compared with wild-type AIP4, suggesting that the interaction between AIP4 and STAM-1 and the ligase activity of AIP4 are essential for ERK-1/2 activation. Remarkably, a discrete subpopulation of AIP4 and STAM-1 resides in caveolar microdomains with CXCR4 and appears to mediate ERK-1/2 signaling. We propose that AIP4-mediated ubiquitination of STAM-1 in caveolae coordinates activation of ERK-1/2 signaling. Thus, our study reveals a novel function for ubiquitin in the regulation of CXCR4 signaling, which may be broadly applicable to other G protein-coupled receptors.  相似文献   

5.
Mutants in signal transduction through the T-cell antigen receptor   总被引:4,自引:0,他引:4  
Mutants of an untransformed helper T-cell clone have been derived by chemical mutagenesis followed by selection for cells incapable of proliferating in response to antigen or anti-CD3. The selection was designed to enrich cells bearing mutations distal to the T-cell antigen receptor. The mutants express normal levels of functional T-cell receptors but are uncoupled from cellular responses, including gene induction, lymphokine secretion, proliferation, and phosphatidylinositol turnover. Responses to phorbol ester plus calcium ionophore and to interleukin-2 are unimpaired. Responses to antigen were restored by fusion with a T-cell receptor-negative thymoma, making the mutants valuable for investigating the mechanisms that couple T-cell receptor stimulation to the induction of second messengers and subsequent physiologic responses.  相似文献   

6.
Modulation of signal transduction by vitamin E   总被引:1,自引:0,他引:1  
The ability of vitamin E to modulate signal transduction and gene expression has been observed in numerous studies; however, the detailed molecular mechanisms involved are often not clear. The eight natural vitamin E analogues and synthetic derivatives affect signal transduction with different potency, possibly reflecting their different ability to interact with specific proteins. Vitamin E modulates the activity of several enzymes involved in signal transduction, such as protein kinase C, protein kinase B, protein tyrosine kinases, 5-, 12-, and 15-lipoxygenases, cyclooxygenase-2, phospholipase A2, protein phosphatase 2A, protein tyrosine phosphatase, and diacylglycerol kinase. Activation of some these enzymes after stimulation of cell surface receptors with growth factors or cytokines can be normalized by vitamin E. At the molecular level, the translocation of several of these enzymes to the plasma membrane is affected by vitamin E, suggesting that the modulation of protein-membrane interactions may be a common theme for vitamin E action. In this review the main effects of vitamin E on enzymes involved in signal transduction are summarized and the possible mechanisms leading to enzyme modulation evaluated. The elucidation of the molecular and cellular events affected by vitamin E could reveal novel strategies and molecular targets for developing similarly acting compounds.  相似文献   

7.
Adaptor proteins assemble multiprotein signaling complexes, enabling the transduction of intracellular signals. While many adaptor proteins positively regulate signaling in this manner, a subgroup of adaptors function as negative regulators. Here we report the identification of a hematopoiesis-specific adaptor protein that we have designated Src-like adaptor protein 2 (SLAP-2). SLAP-2 is most closely related to SLAP and contains a Src homology 3 (SH3) domain and an SH2 domain, as well as an amino-terminal myristoylation site that mediates SLAP-2 association with membranes. Following stimulation of primary thymocytes with anti-CD3 and anti-CD28, SLAP-2 coimmunoprecipitates with tyrosine-phosphorylated c-Cbl and an unidentified protein of approximately 72 kDa. In activated Jurkat T cells, SLAP-2 also binds an additional 70-kDa phosphoprotein, identified as ZAP-70. Binding of SLAP-2 to both p72 and ZAP-70 is dependent on its SH2 domain, while c-Cbl interacts with the carboxy-terminal region. Overexpression of wild-type SLAP-2 alone or in combination with c-Cbl in Jurkat T cells leads to inhibition of T-cell antigen receptor-induced activation of nuclear factor of activated T cells. The inhibitory effect of SLAP-2 requires the carboxy-terminal c-Cbl binding region. Expression of SLAP-2 with SYK or ZAP-70 in COS cells or Jurkat T cells causes the degradation of these kinases, and SLAP-2 overexpression in Jurkat T cells reduces the surface expression of CD3. These results suggest that the mechanism of action of SLAP-2 and the related protein SLAP is to promote c-Cbl-dependent degradation of the tyrosine kinases SYK and ZAP-70 and down-regulation of CD3 at the cell surface.  相似文献   

8.
The involvement of protein tyrosine kinases (PTKs) in aryl hydrocarbon receptor (AhR)-mediated signalling by omeprazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was investigated in hepatoma cells. Both omeprazole- and TCDD-dependent AhR signalling was attenuated by inhibition of c-src kinase, either by using pyrazolopyrimidine 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4 ]pyrimidine (PP1) and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) inhibitors or by expression of dominant-negative c-src. These results indicate that the overall AhR function is modulated by c-src kinase activity. In contrast, a selective inhibition of omeprazole-mediated AhR signalling was revealed by tyrosine kinase inhibitors, tyrphostins AG17 and AG879. Furthermore, omeprazole-dependent AhR activation was abolished by mutation of Tyr320 to Phe, suggesting that this residue is a putative phosphorylation site. TCDD-dependent AhR signalling was neither affected by tyrphostins nor by this mutation. Our results are consistent with activation of the AhR by omeprazole in a ligand-independent manner, via a signal transduction pathway that involves protein tyrosine kinases, and are different from the mechanism exerted by high-affinity ligands.  相似文献   

9.
The inducible serotonergic 1C115-HT cell line expresses a defined set of serotonergic receptors of the 5-HT2B, 5-HT1B/D, and 5-HT2A subtypes, which sustain a regulation of serotonergic associated functions through G-protein-dependent signaling. 1C115-HT cells have been instrumental to assign a signaling function to the cellular prion protein PrPC. Here, we establish that antibody-mediated ligation of PrPC concomitant to agonist stimulation of 5-HT receptors modulates the couplings of all three serotonergic receptors present on 1C115-HT cells. Specific impacts of PrP antibodies were monitored depending on the receptor and pathway considered. PrPC ligation selectively cancels the 5-HT2A-PLC response, decreases the 5-HT1B/D negative coupling to adenylate cyclase, and potentiates the 5-HT2B-PLA2 coupling. As a result, PrPC ligation disturbs the functional interactions occurring between the signaling pathways of the three receptor subtypes. In 1C115-HT cells, antagonizing cross-talks arising from 5-HT2B and 5-HT2A receptors control the 5-HT1B/D function. PrPC ligation reinforces the negative regulation exerted by 5-HT2B on 5-HT1B/D receptors. On the other hand it abrogates the blocking action of 5-HT2A on the regulatory loop linking 5-HT1B/D receptors. We propose that the ligation of PrPC affects the potency or dynamics of G-protein activation by agonist-bound serotonergic receptors. Finally, the PrPC-dependent modulation of 5-HT receptor couplings is restricted to 1C115-HT cells expressing a complete serotonergic phenotype. It critically involves a PrPC-caveolin platform implemented on the neurites of 1C115-HT cells during differentiation. Our findings define PrPC as a modulator of 5-HT receptor coupling to G-proteins and thereby as a protagonist contributing to the homeostasis of serotonergic neurons. They provide a foundation for uncovering the impact of prion infection on serotonergic functions.  相似文献   

10.
Stolt PC  Bock HH 《Cellular signalling》2006,18(10):1560-1571
Members of the low density lipoprotein (LDL) receptor gene family are critically involved in a wide range of physiological processes including lipid and vitamin homeostasis, cellular migration, neurodevelopment, and synaptic plasticity, to name a few. Lipoprotein receptors exert these diverse biological functions by acting as cellular uptake receptors or by inducing intracellular signaling cascades. It was discovered that a short sequence in the intracellular region of all lipoprotein receptors, Asn-Pro-X-Tyr (NPXY) is important for mediating either endocytosis or signal transduction events, and that this motif serves as a binding site for phosphotyrosine-binding (PTB) domain containing scaffold proteins. These molecular adaptors connect the transmembrane receptors with the endocytosis machinery and regulate cellular trafficking, or function as assembly sites for dynamic multi-protein signaling complexes. Whereas the LDL receptor represents the archetype of an endocytic lipoprotein receptor, the structurally closely related apolipoprotein E receptor 2 (apoER2) and very low density lipoprotein (VLDL) receptor activate a kinase-dependent intracellular signaling cascade after binding to the neuronal signaling molecule Reelin. This review focuses on two related PTB domain containing adaptor proteins that mediate these divergent lipoprotein receptor responses, ARH (autosomal recessive hypercholesterolemia protein) and Dab1 (disabled-1), and discusses the structural and molecular basis of this different behaviour.  相似文献   

11.
12.
A protein, called tip, of herpesvirus saimiri associates with Lck in transformed T cells. To investigate the effects of complex formation on cellular signal transduction, we constructed human Jurkat-T-cell lines expressing tip. The expression of tip in Jurkat-T cells dramatically suppressed cellular tyrosine phosphorylation and surface expression of lymphocyte antigens. The expression of tip also blocked the induction of tyrosine phosphorylation by anti-CD3 stimulation. The expression of tip in fibroblast cells suppressed the transforming activity of oncogenic F505 Lck. Binding assays showed that the SH3 domain of Lck is sufficient to form a stable complex with tip in vitro. These results demonstrate that tip acts at an early stage of the T-cell signal transduction cascade by associating with Lck and downregulating Lck-mediated activation. Inhibition of Lck-mediated signal transduction by tip in T cells appears to be analogous to the inhibition of Lyn/Syk-mediated signal transduction in B cells by LMP2A of the B-cell-tropic Epstein-Barr virus.  相似文献   

13.
We have performed a screen aimed at identifying human herpesvirus 6 (HHV-6)-encoded proteins that modulate immune recognition. Here we show that the U24 protein encoded by HHV-6 variant A downregulates cell surface expression of the T-cell receptor (TCR)/CD3 complex, a complex essential to T-cell activation and the generation of an immune adaptive response. In the presence of U24, the TCR/CD3 complex is endocytosed but is not recycled back to the plasma membrane. Instead, it accumulates in early and late endosomes. Interestingly, whereas CD3 downregulation from the cell surface is normally associated with T-cell activation, U24 downregulates CD3 independently of T-cell activation. Moreover, we found that U24-expressing T cells are resistant to activation by antigen-presenting cells. HHV-6 has evolved a unique mechanism of inhibition of T-cell activation that may impair the establishment of an adaptive immune response. Furthermore, lymphocyte activation creates an environment favorable to the reactivation and replication of lymphotropic herpesviruses. Thus, by inhibiting T-cell activation, HHV-6 might limit its reactivation and thus minimize immune recognition.  相似文献   

14.
Infected cells recognize viral replication as a DNA damage stress and elicit a DNA damage response that ultimately induces apoptosis as part of host immune surveillance. Here, we demonstrate a novel mechanism where the murine gamma herpesvirus 68 (gammaHV68) latency-associated, anti-interferon M2 protein inhibits DNA damage-induced apoptosis by interacting with the DDB1/COP9/cullin repair complex and the ATM DNA damage signal transducer. M2 expression constitutively induced DDB1 nuclear localization and ATM kinase activation in the absence of DNA damage. Activated ATM subsequently induced Chk activation and p53 phosphorylation and stabilization without eliciting H2AX phosphorylation and MRN recruitment to foci upon DNA damage. Consequently, M2 expression inhibited DNA repair, rendered cells resistant to DNA damage-induced apoptosis, and induced a G(1) cell cycle arrest. Our results suggest that gammaHV68 M2 blocks apoptosis-mediated intracellular innate immunity, which might ultimately contribute to its role in latent infection.  相似文献   

15.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc.  相似文献   

16.
Signal transduction through receptor tyrosine kinases is believed to occur mainly at the plasma membrane. Ligands bind to their cognate receptors and trigger autophosphorylation events, which are detected by intracellular signalling molecules. However, ligands, such as epidermal growth factor and insulin, induce the rapid internalization of their receptors into endosomes. Although this event is traditionally thought to attenuate the ligand-induced response, in this article the authors discuss an alternative scenario in which selective and regulated signal transduction from receptor tyrosine kinases occurs within the endosome.  相似文献   

17.
The phytohormone abscisic acid (ABA) regulates plant growth and development as well as stress tolerance. The Arabidopsis sad1 (supersensitive to ABA and drought) mutation increases plant sensitivity to drought stress and ABA in seed germination, root growth, and the expression of some stress-responsive genes. sad1 plants are also defective in the positive feedback regulation of ABA biosynthesis genes by ABA and are impaired in drought stress induction of ABA biosynthesis. SAD1 encodes a polypeptide similar to multifunctional Sm-like snRNP proteins that are required for mRNA splicing, export, and degradation. These results suggest a critical role for mRNA metabolism in the control of ABA signaling as well as in the regulation of ABA homeostasis.  相似文献   

18.
19.
1. When rat astrocytes in primary culture were incubated with bradykinin, inositol phosphate formation and arachidonic acid release were stimulated. 2. By themselves, phorbol esters inhibited inositol phosphate formation, but phorbol esters and other cell-permeant diacylglycerol analogues stimulated arachidonic acid release. Preincubation of the cells with phorbol esters or diacylglycerol analogues blocked bradykinin-stimulated inositol phosphate formation but augmented bradykinin-stimulated arachidonic acid release. 3. The present results suggest that, in astrocytes, bradykinin activates at least two signal transduction pathways bradykinin stimulates a phosphatidylinositol-specific phospholipase C leading to enhanced inositol phosphate formation, and bradykinin stimulates a second phospholipase to enhance arachidonic acid release. The pathways may be distinguished using phorbol esters and other diacylglycerol mimetics. 4. The possibility is raised that diacylglycerol, formed in response to bradykinin, may serve as a transducer of receptor-receptor interactions by altering the ability of receptors to stimulate phospholipase activity.  相似文献   

20.
Toll-like receptors (TLRs) have an anti-viral role in that they detect viruses, leading to cytokine and IFN induction, and as such are targeted by viruses for immune evasion. TLR4, although best known for its role in recognizing bacterial LPS, is also strongly implicated in the immune response to viruses. We previously showed that the poxviral protein A46 inhibits TLR4 signaling and interacts with Toll-IL-1 receptor (TIR) domain-containing proteins of the receptor complex. However the exact molecular mechanism whereby A46 disrupts TLR4 signaling remains to be established, and may yield insight into how the TLR4 complex functions, since viruses often optimally target key residues and motifs on host proteins for maximal efficiency. Here we show that A46 targets the BB loop motif of TIR proteins and thereby disrupts receptor:adaptor (TLR4:Mal and TLR4:TRAM), but not receptor:receptor (TLR4:TLR4) nor adaptor:adaptor (Mal:MyD88, TRAM:TRIF, and Mal:Mal) TIR interactions. The requirement for an intact BB loop for TIR adaptor interactions correlated with the protein:protein interfaces antagonized by A46. We previously discovered a peptide fragment derived from A46 termed VIPER (Viral Inhibitory Peptide of TLR4), which specifically inhibits TLR4 responses. Here we demonstrate that the region of A46 from which VIPER is derived represents the TLR4-specific inhibitory motif of the intact protein, and is essential for A46:TRAM interactions. This study provides the molecular basis for pathogen subversion of TLR4 signaling and clarifies the importance of TIR motif BB loops, which have been selected for viral antagonism, in the formation of the TLR4 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号