首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To obtain selective and potent inhibitors of dipeptidyl peptidases 8 and 9, we synthesized a series of substituted isoindolines as modified analogs of allo-Ile-isoindoline, the reference DPP8/9 inhibitor. The influence of phenyl substituents and different P2 residues on the inhibitors’ affinity toward other DPPs and more specifically, their potential to discriminate between DPP8 and DPP9 will be discussed. Within this series compound 8j was shown to be a potent and selective inhibitor of DPP8/9 with low activity toward DPP II.  相似文献   

2.
A series of (2S)-cyanopyrrolidines with glutamic acid derivatives at the P2 site have been prepared and evaluated as inhibitors of dipeptidyl peptidase IV (DPP-IV). The structure–activity relationships (SAR) led to the discovery of potent 3-substituted glutamic acid analogues, providing enhanced chemical stability and excellent selectivity over the closely related enzymes, DPP8, DPP-II and FAP. Compound 13f exhibited the ability to both significantly decrease the glucose excursion and inhibit plasma DPP-IV activity.  相似文献   

3.
The present study examined the taxonomic distribution of dipeptidyl peptidase IV (DPP IV) activity in venoms of 59 ophidian taxa, representing seven subfamilies of the Families Elapidae and Viperidae. DPP IV activity is extremely variable at all taxonomic levels. It ranged from essentially none in laticaudine, hydrophiine, and some bungarine and elapine venoms, to 10.72 μmol 4-methoxy-β-naphthylamine liberated per min per 200 μg venom, for Ophiophagus hannah. Intra- and interpopulational variation were examined among eight populations of prairie rattlesnakes (Crotalus viridis viridis), Great Basin rattlesnakes (Crotalus viridis lutosus) and southern Pacific rattlesnakes (Crotalus viridis helleri). Among these populations, the mean weighted range of variation was 4.9-fold, and even among litter mates of C. v. lutosus, DPP IV activity varied as much as 5.6-fold. The two most salient findings, the near ubiquity of DPP IV in snake venoms and its great quantitative variability, even among full siblings, are paradoxical. The widespread distribution of the enzyme suggests an important role in envenomation, while the variable activity levels suggest that DPP IV and by extension, other individual enzymatic constituents, may not be under much individual selective pressure.  相似文献   

4.
To find potent and selective inhibitors of dipeptidyl peptidase IV (DPP-IV), we synthesized a series of 2-cyanopyrrolidine with P2-site 4-substituted glutamic acid derivatives and tested their activities against DPP-IV, DPP8, and DPP-II. Analogues that incorporated a bulky substituent at the first carbon position of benzylamine or isoquinoline showed over 30-fold selectivity for DPP-IV over both DPP8 and DPP-II. From structure-activity relationship studies, we speculate that the S2 site of DPP8 might be similar to that of DPP-IV, while DPP-IV inhibitor with N-substituted glycine in the P2 site and/or with a moiety involving in hydrophobic interaction with the side chain of Phe357 might provide a better selectivity for DPP-IV over DPP8.  相似文献   

5.
The synthesis and biochemical evaluation of novel cyanothiazolidine inhibitors of dipeptidyl peptidase 4 (DPP4) is described. Their main structural feature is a constrained bicyclic core that prevents the intramolecular formation of inactive cyclic species. The inhibitors show good to moderate biochemical potency against DPP4 and display distinct selectivity profiles towards DPP7, DPP8 and DPP9 depending on their substitution.  相似文献   

6.
Substituted 3-aminopiperidines 3 were evaluated as DPP-4 inhibitors. The inhibitors showed good DPP-4 potency with superb selectivity over other peptidases (QPP, DPP8, and DPP9). Selected DPP-4 inhibitors were further evaluated for their hERG potassium channel, calcium channel, Cyp2D6, and pharmacokinetic profiles.  相似文献   

7.
Berberine was investigated as an inhibitor of human dipeptidyl peptidase IV (DPP IV) in an attempt to explain its anti-hyperglycemic activities. The investigation included simulated docking experiments to fit berberine within the binding pocket of DPP IV. Berberine was found to readily fit within the binding pocket of DPP IV in a low energy orientation characterized with optimal electrostatic attractive interactions bridging the isoquinolinium positively charged nitrogen atom (berberine) and the negatively charged acidic residue of glutamic acid-205 (GLU205) of DPP IV. Experimentally, berberine was found to inhibit human recombinant DPP IV in vitro with IC50 = 13.3 μM. Our findings suggest that DPP IV inhibition is, at least, one of the mechanisms that explain the anti-hyperglycemic activity of berberine. The fact that berberine was recently reported to potently inhibit the pro-diabetic target human protein tyrosine phosphatase 1B (h-PTP 1B) discloses a novel dual natural h-PTP 1B/DPP IV inhibitor.  相似文献   

8.
Synthesis and SAR are described for a structurally distinct class of DPP–IV inhibitors based on aminobenzo[a]quinolizines bearing (hetero-)aromatic substituents in the S1 specificity pocket. The m-(fluoromethyl)-phenyl derivative (S,S,S)-2g possesses the best fit in the S1 pocket. However, (S,S,S)-2i, bearing a more hydrophilic 5-methyl-pyridin-2-yl residue as substituent for the S1 pocket, displays excellent in vivo activity and superior drug-like properties.  相似文献   

9.
The successful launches of dipeptidyl peptidase IV (DPP IV) inhibitors as oral anti-diabetics warrant and spur the further quest for additional chemical entities in this promising class of therapeutics. Numerous pharmaceutical companies have pursued their proprietary candidates towards the clinic, resulting in a large body of published chemical structures associated with DPP IV. Herein, we report the discovery of a novel chemotype for DPP IV inhibition based on the C-(1-aryl-cyclohexyl)-methylamine scaffold and its optimization to compounds which selectively inhibit DPP IV at low-nM potency and exhibit an excellent oral pharmacokinetic profile in the rat.  相似文献   

10.
Angiotensin-(1–7) (Ang-(1–7)) is expressed within the kidney and exhibits renoprotective actions that antagonize the inflammatory, fibrotic and pro-oxidant effects of the Ang II-AT1 receptor axis. We previously identified a peptidase activity from sheep brain, proximal tubules and human HK-2 proximal tubule cells that metabolized Ang-(1–7); thus, the present study isolated and identified the Ang-(1–7) peptidase. Utilizing ion exchange and hydrophobic interaction chromatography, a single 80 kDa protein band on SDS-PAGE was purified from HK-2 cells. The 80 kDa band was excised, the tryptic digest peptides analyzed by LC–MS and a protein was identified as the enzyme dipeptidyl peptidase 3 (DPP 3, EC: 3.4.14.4). A human DPP 3 antibody identified a single 80 kDa band in the purified enzyme preparation identical to recombinant human DPP 3. Both the purified Ang-(1–7) peptidase and DPP 3 exhibited an identical hydrolysis profile of Ang-(1–7) and both activities were abolished by the metallopeptidase inhibitor JMV-390. DPP 3 sequentially hydrolyzed Ang-(1–7) to Ang-(3–7) and rapidly converted Ang-(3–7) to Ang-(5–7). Kinetic analysis revealed that Ang-(3–7) was hydrolyzed at a greater rate than Ang-(1–7) [17.9 vs. 5.5 nmol/min/μg protein], and the Km for Ang-(3–7) was lower than Ang-(1–7) [3 vs. 12 μM]. Finally, chronic treatment of the HK-2 cells with 20 nM JMV-390 reduced intracellular DPP 3 activity and tended to augment the cellular levels of Ang-(1–7). We conclude that DPP 3 may influence the cellular expression of Ang-(1–7) and potentially reflect a therapeutic target to augment the actions of the peptide.  相似文献   

11.
Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0–9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.  相似文献   

12.
Dipeptidyl peptidase IV (DPP4), DPP8, DPP9, and fibroblast activation protein (FAP), the four proteases of the DPP4 gene family, have unique peptidase and extra-enzymatic activities that have been implicated in various diseases including cancers. We report here a novel role of DPP9 in regulating cell survival and proliferation through modulating molecular signaling cascades. Akt (protein kinase B) activation was significantly inhibited by human DPP9 overexpression in human hepatoma cells (HepG2 and Huh7) and human embryonic kidney cells (HEK293T), whereas extracellular signal-regulated kinases (ERK1/2) activity was unaffected, revealing a pathway-specific effect. Interestingly, the inhibitory effect of DPP9 on Akt pathway activation was growth factor dependent. DPP9 overexpression caused apoptosis and significantly less epidermal growth factor (EGF)-mediated Akt activation in HepG2 cells. However, such inhibitory effect was not observed in cells stimulated with other growth factors, including connective tissue growth factor, hepatic growth factor, insulin or platelet-derived growth factor-BB. The effect of DPP9 on Akt did not occur when DPP9 enzyme activity was ablated by either mutagenesis or inhibition. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a major downstream effector of Ras. We found that DPP9 and DPP8, but not DPP4 or FAP, associate with H-Ras, a key signal molecule of the EGF receptor signaling pathway. These findings suggest an important signaling role of DPP9 in the regulation of survival and proliferation pathways.  相似文献   

13.
Molecular modeling of unbound tricyclic guanine scaffolds indicated that they can serve as effective bioisosteric replacements of xanthines. This notion was further confirmed by a combination of X-ray crystallography and SAR studies, indicating that tricyclic guanine DPP4 inhibitors mimic the binding mode of xanthine inhibitors, exemplified by linagliptin. Realization of the bioisosteric relationship between these scaffolds potentially will lead to a wider application of cyclic guanines as xanthine replacements in drug discovery programs for a variety of biological targets. Newly designed DPP4 inhibitors achieved sub-nanomolar potency range and demonstrated oral activity in vivo in mouse glucose tolerance test.  相似文献   

14.
A series of 2-[3-[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl]-based DPP-IV inhibitors with various monocyclic amines were synthesized. The structure–activity relationships (SAR) led to the discovery of potent DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP-II, DPP8, DPP9 and FAP (IC50 > 20 μM). Of these compounds, the analogues 12a, 12h and 12i exhibited a long-lasting ex vivo DPP-IV inhibition in rats.  相似文献   

15.
The boroProline-based dipeptidyl boronic acids were among the first DPP-IV inhibitors identified, and remain the most potent known. We introduced various substitutions at the 4-position of the boroProline ring regioselectively and stereoselectively, and incorporated these aminoboronic acids into a series of 4-substituted boroPro-based dipeptides. Among these dipeptidyl boronic acids, Arg-(4S)-boroHyp (4q) was the most potent inhibitor of DPP-IV, DPP8 and DPP9, while (4S)-Hyp-(4R)-boroHyp (4o) exhibited the most selectivity for DPP-IV over DPP8 and DPP9.  相似文献   

16.
17.
Abstract

The single-crystal structure of anagliptin, N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide, was determined. Two independent molecules were held together by intermolecular hydrogen bonds, and the absolute configuration of the 2-cyanopyrrolidine ring delivered from l-prolinamide was confirmed to be S. The interactions of anagliptin with DPP-4 were clarified by the co-crystal structure solved at 2.85?Å resolution. Based on the structure determined by X-ray crystallography, the potency and selectivity of anagliptin were discussed, and an SAR study using anagliptin derivatives was performed.  相似文献   

18.
The intracellular peptidases dipeptidyl peptidase (DPP) 8 and DPP9 are involved in multiple cellular pathways including antigen maturation, cellular homeostasis, energy metabolism, and cell viability. Previously we showed that the small ubiquitin-like protein modifier SUMO1 interacts with an armlike structure in DPP9, leading to allosteric activation of the peptidase. Here we demonstrate that the E67-interacting loop (EIL) peptide, which corresponds to the interaction surface of SUMO1 with DPP9, acts as a noncompetitive inhibitor of DPP9. Moreover, by analyzing the sensitivity of DPP9 arm mutants to the EIL peptide, we mapped specific residues in the arm that are important for inhibition by the EIL, suggesting that the peptide acts as an allosteric inhibitor of DPP9. By modifying the EIL peptide, we constructed peptide variants with more than a 1,000-fold selectivity toward DPP8 (147 nm) and DPP9 (170 nm) over DPPIV (200 μm). Furthermore, application of these peptides to cells leads to a clear inhibition of cellular prolyl peptidase activity. Importantly, in line with previous publications, inhibition of DPP9 with these novel allosteric peptide inhibitors leads to an increase in EGF-mediated phosphorylation of Akt. This work highlights the potential use of peptides that mimic interaction surfaces for modulating enzyme activity.  相似文献   

19.
Dipeptidyl peptidase III (DPP III), also known as enkephalinase B, is a zinc-hydrolase with an indicated role in the mammalian pain modulatory system. In order to find a potent antagonist of this enzyme, we synthesized and screened the effect of a small set of benzimidazole derivatives on its activity. To improve the inhibitory potential, a cyclobutane ring was introduced as rigid conformation support to the diamidino substituted dibenzimidazoles. Two such compounds (1' and 4') from the group of cyclobutane derivatives containing amidino-substituted benzimidazole moieties, obtained by photochemical cyclization in water and by respecting rules of the "green chemistry" approach, were found to be strong DPP III inhibitors, with IC(50) value below 5 microM. Compound 1' displayed time-dependent inhibition towards human DPP III, characterized by the second-order rate constant of 6924+/-549 M(-1)min(-1) (K(i)=0.20 microM). The peptide substrate valorphin protected the enzyme from inactivation by 1'.  相似文献   

20.
anti-Substituted beta-methylphenylalanine derived amides have been shown to be potent DPP-IV inhibitors exhibiting excellent selectivity over both DPP8 and DPP9. These are among the most potent compounds reported to date lacking an electrophilic trap. The most potent compound among these is 5-oxo-1,2,4-oxadiazole 44, which is a 3 nM DPP-IV inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号