首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Improving Spirulina platensis biomass yield using a fed-batch process   总被引:6,自引:0,他引:6  
Increasing interest is being shown in the cyanobacterium Spirulina platensis because of its nutritional properties when used as food supplement and possible therapeutic effects. One of the most important areas being studied is the development of alternative nutrient sources which can be used to decrease the production costs of commercially produced S. platensis and obtain high productivity. Water from Mangueira Lagoon (Rio Grande do Sul State, Brazil) has high levels of carbonates and a high pH and has the potential to be used as a culture medium for S. platensis, although some nutrient supplementation may be required. We tested the effect of unsupplemented Mangueira Lagoon water (MLW) or MLW supplemented with 1.125 or 2.250 mg/l of urea and/or 21 or 42 mg/l of sodium bicarbonate on the growth of S. platensis in fed-batch culture using a 3(2) factorial design and found that there the addition of 1.125 mg/l of urea resulted in a 2.67 fold increase times in the final biomass concentration of S. platensis.  相似文献   

2.
The cyanobacterium Spirulina platensis has been used by humans because of its nutritional and possibly medicinal effects. Our study evaluated the influence of temperature and nitrogen concentration in the medium on the production of biomass by this cyanobacterium and the biomass composition in protein, lipid and phenolic compounds. We found that at 35 degrees C there was a negative effect on biomass production but a positive effect on the production of protein, lipids and phenolics, the highest levels of these compounds being obtained in Zarrouk's medium containing 1.875 or 2.500 g l(-1) sodium nitrate. Higher biomass densities and productivity were obtained at 30 degrees C than at 35 degrees C, but nitrogen concentration appeared to have no effect on the amount of protein, lipid or phenolics, indicating that at 30 degrees C the concentration of sodium nitrate in Zarrouk's medium (2.50 g l(-1)) can be reduced without loss of productivity, an important cost-saving factor in large-scale cultivation.  相似文献   

3.
The influence of nutrient addition on the growth rate of Spirulina platensis in the Mangueira Lagoon water was studied in order to investigate the feasibility of using this water for biomass production. The addition of urea and sodium bicarbonate was studied through surface response methodology, over concentration ranges from 0.0 to 0.01170 M, and 0.0–19.70 gl–1 respectively. The growth of Spirulina platensis in Mangueira Lagoon water with no addition of nutrients was carried out and compared with the biomass growth after nutrient addition. The results indicated that the optimal level of nutrients was 0.00585 M urea and without the addition of sodium bicarbonate. The biomass concentration was 1.4 gl–1 in 780 h of cultivation and the doubling time (t d) was 3.85 days. In 300 h, the biomass concentration in the medium without nutrient addition was 0.9 gl–1, with a doubling time of 3.80 days.  相似文献   

4.
To investigate the feasibility of using fresh water from Mangueira Lagoon (Rio Grande do Sul, Brazil) for biomass production in open raceway ponds (0.7 m long, 0.18 m wide, 0.075 m deep) we studied the influence of nutrient addition (carbon as sodium bicarbonate, nitrogen as urea, phosphate, sulfate, ferric iron, magnesium and potassium) on the growth rate of the cyanobacteria Spirulina platensis using a 22 factorial design. In unsupplemented lagoon water production of S platensis was 0.78 +/- 0.01 g/l (dry weight basis) while the addition of 2.88 g/l of sodium bicarbonate (without added urea, phosphate, sulfate or metal ions) resulted in 0.82 +/- 0.01 g/l after 400 hours of culture. The further addition of phosphate and metal ions resulted in growth for up to 750 h and a final S. platensis biomass of 1.23 +/- 0.04 to 1.34 +/- 0.03 g/l.  相似文献   

5.
A filamentous microorganism, morphologically similar to the cyanobacterium Arthrospira, was isolated from Mangueira Lagoon in Brazil, from which Arthrospira has not previously been isolated. Random amplified polymorphic DNA (RAPD) comparison with the standard Arthrospira platensis strains LEB 52 and Paracas indicated that the organism isolated was an Arthrospira isolate, which we denominated strain LEB 18. The RAPD analysis showed conserved sequences which indicated that the three strains belonged to the same genus, and were all Arthrospira species, but there were sufficient differences between them suggesting that they were separate strains. The strain LEB 18 was cultivated in undiluted Zarrouk medium and in 60% and 20% (v/v) Zarrouk medium diluted with sterilized Mangueira Lagoon water (MLW) using illuminance rates of 32.5, 45.5 and 58.5 micromol m(-2) s(-1) according to a complete 32 factorial design with a triplicate central point. The strains LEB 52 and Paracas were cultived in the conditions central point. Our new isolate produced the highest specific growth rate (Umax = 0.22 d(-1)) in 60% Zarrouk medium diluted with MLW and illuminated with 58.5 micromol m(-2) s(-1) and the highest protein content (86.0% w/w).  相似文献   

6.
The blue-green microalga (cyanobacterium) S. platensis and the complex of its metabolites in the culture fluid being added into nutrient agar in doses of 0.01, 0.1 and 10 mg/ml, may produce a stimulating and inhibiting effect on microorganisms. In Spirulina biomass and in culture fluid substances which may be associated with the stimulation or inhibition of the growth of some microorganisms are supposedly contained. The manifestation of stimulating or inhibiting properties depended on the concentration of S. platensis and the complex of its metabolites, as well as on sterilization methods of nutrient media supplemented with these substances.  相似文献   

7.
Chen T  Zheng W  Wong YS  Yang F  Bai Y 《Bioresource technology》2006,97(18):2260-2265
Accumulation of Se in mixotrophic culture of Spirulina platensis was investigated in this study. Results indicated that glucose was better than acetate as an organic carbon source for mixotrophic culture of S. platensis. Supplementation of glucose (2 gL(-1)) significantly enhanced the biomass concentration (2.57 gL(-1)) and the production of phycocyanin (0.279 gL(-1)) and allophycocyanin (0.126 gL(-1)) in S. platensis, which were much higher than those of photoautotrophic culture (1.08 gL(-1), 0.119 gL(-1) and 0.042 gL(-1), respectively). Stepwise addition of Se during the growth phase avoided the inhibitory effect of high Se concentration on the growth of S. platensis. The Se enrichment favored the production of phycocyanin and allophycocyanin in the algal cells. The highest Se yield (1033 microgL(-1)) was obtained at an accumulative Se concentration of 250 mgL(-1), with organic Se percentage, biomass concentration, phycocyanin and allophycocyanin yields of 92.3%, 2.55 gL(-1), 0.295 gL(-1) and 0.153 gL(-1), respectively. These results indicated that the application of mixotrophic culture S. platensis with stepwise addition of Se to the medium could offer an effective and economical way for the production of high Se-enriched algal products.  相似文献   

8.
The semi-outdoor cultivation of Spirulina platensis was attempted using an underground-water-based medium. Occurrence of contaminant organisms such as Chlorella sp. and Chlamydomonas sp. was not found from a microscopic observation and bacteria were not detected from denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA during the cultivation, owing to pH control and the high quality of the underground water. The mean productivity was high at 10.5 g/m2/d with a range of 4.2-12.3 g/m2/d despite the unfavorable weather conditions of the rainy season. The cultivated S. platensis included a normal protein content of 58.9%. Consequently, the underground water improved the biomass productivity and the biomass quality because of an abundant supplementation of natural minerals and through a contaminant-free culture.  相似文献   

9.
Water supplemented with 10% or 20% (v/v) of Zarrouk medium was used to cultivate Spirulina platensis in closed and open bioreactors under controlled conditions (30 degrees C, 32.5 micromol m(-2) s(-1), 12 h light/dark photoperiod) and in a greenhouse (9.4 to 46 degrees C, up to 2800 micromol m(-2) s(-1), variable day length photoperiod) using different initial biomass concentrations (X0) in the extreme south of Brazil (32.05 degrees S, 52.11 degrees W). Under controlled conditions the maximum specific growth rate (micromax) was 0.102 d(-1), the biomass doubling time (t(d)) was 6.8 d, the maximum dry biomass concentration (Xmax) was 1.94 g L(-1) and the maximum productivity (Pmax) was 0.059 g L(-)1 d(-1), while the corresponding values in the greenhouse experiments were micromax = 0.322 d(-1), t(d) = 2.2 d, Xmax = 1.73 g L(-1) and Pmax = 0.112 g L(-1) d(-1). Under controlled conditions the highest values for these parameters occurred when X0 = 0.15 g L(-1), while in the greenhouse X0 = 0.4 g L(-1) produced the highest values. These results show that the cultivation of S. platensis in greenhouses in the extreme south of Brazil is technically viable and that the S. platensis inoculum and the concentration of Zarrouk medium can be combined in such a way as to obtain growth and productivity parameters comparable, or superior, to those occurring in bioreactors under controlled conditions of temperature, illuminance and photoperiod.  相似文献   

10.
The impact of the biomass of the blue-green microalga (cyanobacterium) S. platensis on bacteriophage T4 (bacterial virus) has been evaluated. The study revealed that the addition of S. platensis biomass into the agar nutrient medium, followed by sterilization with 2% chloroform and thermal treatment, produced an inhibiting or stimulating effect on the reproduction of the bacteriophage in Escherichia coli B cells, depending on the concentration of S. platensis and the multiplicity of phage infection, as well as on the fact whether the microalgae were added during the first cycle of the development of the virus. The reproduction of the bacteriophage in E. coli B was influenced by the method and duration of the sterilization of the nutrient medium with S. platensis.  相似文献   

11.
Production of Spirulina biomass: Maintenance of monoalgal culture outdoors   总被引:2,自引:0,他引:2  
The effects of sodium bicarbonate concentration, population density, and temperature on the maintenance of an outdoor monoculture of the cyanobacterium Spirulina platensis were studied. A clear response by Spirulina to the concentration of bicarbonate was evident, with 0.2M bicarbonate representing the lowest concentration in which a monoculture could be maintained. When the temperatures fell during the winter period to some 20-25 degrees C below the optimum for Spirulina, Chlorella sp. gradually increased and became the dominant species in the culture. Raising the temperature by covering the pond with transparent polyethylene resulted in a sharp decline in the population of Chlorella, and a gradual resumption of species dominance by Spirulina. In winter, there was an inverse relationship in the pond between the population density of Spirulina and the extent of contamination by Chlorella sp.; but no such effect was observed under field conditions at temperatures higher than 25 degrees C.  相似文献   

12.
The cyanobacterium Spirulina platensis is an attractive alternative source of the pigment chlorophyll, which is used as a natural color in food, cosmetic, and pharmaceutical products. In this work, the influence of the light intensity and urea supplementation as a nitrogen source using fed-batch cultivation for S. platensis growth and chlorophyll content was examined. Cultivations were carried out in 5 l open tanks, at 30+/-1 degrees C. Response surface methodology was utilized for analysis of the results, and models were obtained for biomass productivity, nitrogen-cell conversion factor and chlorophyll productivity. The best cellular growth was observed with 500 mg/l of urea at a light intensity of 5600 lx, whereas the highest concentration of chlorophyll in the biomass was observed with 500 mg/l of urea at a light intensity of 1400 lx. Overall, the best chlorophyll productivity was observed with 500 mg/l of urea at a light intensity of 3500 lx, providing the optimal balance between the cellular growth and the biomass chlorophyll content.  相似文献   

13.
The effects of temperature, Mg2+, EDTA concentration and rinsing on extra- and intra-cellular DNase activity of Spirulina platensis strain SSP-14, were investigated. The results indicate that the tested strain contains very high extra- and intracellular DNase activity, which actually hinders the transfer of foreign gene(s) to S. platensis, a cyanobacterium with multiple economic potentials. The extracellular DNase activity could easily be removed by rinsing the cells with Zarrouk medium more than once. The intracellular DNase activity could also be inhibited by (1) removal of Mg2+, (2) maintaining EDTA concentration above 1 mmol l(-1), and (3) manipulating below 0-4 degrees C, during all the incubation procedures. We suggest that, by using one or more of, or combining, all those experimental conditions, the chances of foreign DNA attempted to be introduced into S. platensis without being digested would be increased.  相似文献   

14.
The present work deals with the harvesting of Arthrospira platensis (Spirulina) from a diluted culture medium. This cyanobacterium was retained by the European Space Agency as food supply for long term manned spatial missions, and integrated in the MELiSSA project: an artificial microecosystem which supports life in space. Membranes techniques seem to be adapted to efficiency, reliability and safety constraints, even if a well-known limitation is the progressive fouling and permeation flux decrease. Among usual solid/liquid separation processes, Arthrospira harvesting is performed by tangential ultrafiltration (tubular inorganic membrane 50 kD Céram-Inside from Tami, Nyons, France). To ensure a reliable separation step with the best biomass quality, a good comprehension of the ultrafiltration progress and fouling phenomenon is needed, in particular, the link between operating parameters, permeation flux and cleanability. Comparative experiments were made between limiting and critical flux with different suspensions: fresh biomass, stressed biomass and a suspension of Arthrospira platensis enriched with exopolysaccharides.  相似文献   

15.
The influence of culture temperature and the concentration of sodium nitrate (NaNO3) on the gas-chromatographic profile of the fatty acids of the filamentous cyanobacterium Spirulina platensis was evaluated. We found that temperature was the most important factor and that the greatest amount of gamma-linolenic acid (GLA) was obtained at 30 degrees C, the fatty acid profile of the Spirulina cultivated showing that (in order of abundance) palmitic, linolenic and linoleic acids were most prevalent.  相似文献   

16.
Cultivation of Spirulina platensis using ammonium salts or wastewater containing ammonium as alternative nitrogen sources is considered as a commercial way to reduce the production cost. In this research, by analyzing the relationship between biomass production and ammonium- N consumption in the fed-batch culture of Spirulina platensis using ammonium bicarbonate as a nitrogen nutrient source, an online adaptive control strategy based on optical density (OD) measurements for controlling ammonium feeding was presented. The ammonium concentration was successfully controlled between the cell growth inhibitory and limiting concentrations using this OD-based feedback feeding method. As a result, the maximum biomass concentration (2.98 g/l), productivity (0.237 g/l·d), nitrogen-to-cell conversion factor (7.32 gX/gN), and contents of protein (64.1%) and chlorophyll (13.4 mg/g) obtained by using the OD-based feedback feeding method were higher than those using the constant and variable feeding methods. The OD-based feedback feeding method could be recognized as an applicable way to control ammonium feeding and a benefit for Spirulina platensis cultivations.  相似文献   

17.
在钝顶螺旋藻(Spirulina platensis)和极大螺旋藻(Spirulina maximum)接种的第5天至第10天添加不同浓度的亚碲酸钠,研究Te(Ⅳ)胁迫对两种螺旋藻的生长、抗氧化活性系统和脂质过氧化作用的影响。结果表明,通过调节添加碲的时间,可以有效地调节碲胁迫强度,随着加碲时间依次后移,碲胁迫强度逐渐减小,螺旋藻的最终生物量递增。碲对螺旋藻的生物效应与碲胁迫强度有关,也与添加碲时藻所处的生长期有关。实验组Ⅲ(分别在第7、8、第9天三天添加碲)的碲胁迫强度并不是最低的,两种螺旋藻的最终生物量也不是最大,但MDA的含量却是最低的,表明该实验组的生长状态是最佳的。各种抗氧化酶(SOD、GPX、CAT、APX和POD)的活性变化情况较复杂。其中,在碲胁迫下,GPX的活性显著提高。    相似文献   

18.
Factors indicating culture status of two Spirulina platensis strains were monitored in a batch mode cultivation for 36 days. Changing mode in all factors showed a common turning point, indicating shift of cell or culture status. Mean biomass productivity was highly sustained until day 22, chlorophyll a concentration peaked on day 22, pH value was >12 on day 22, coil number was abruptly shortened on day 22, and floating activity was sustained at greater than 79% after day 22, indicating that day 22 is a criterion reflecting phase-transfer in cell physiology in a batch culture system. Many of these changes may have been caused by increased pH, suggesting that pH control is essential for mass production of S. platensis. Fluctuations in floating activity were likely induced by the number of cellular gas vacuoles. Consequently, coil number per trichome and floating activity of S. platensis could readily act as simple indicators for determination of culture status or harvesting time of cells.  相似文献   

19.
Phycocyanin extraction from cyanobacteria Spirulina platensis was optimized using factorial design and response surface techniques. The effects of temperature and biomass-solvent ratio on phycocyanin concentration and extract purity were evaluated to determine the optimum conditions for phycocyanin extraction. The optimum conditions for the extraction of phycocyanin from S. platensis were the highest biomass-solvent ratio, 0.08 gmL(-1), and 25 degrees C. Under these conditions it's possible to obtain an extract of phycocyanin with a concentration of 3.68 mgmL(-1) and purity ratio (A(615)/A(280)) of 0.46.  相似文献   

20.
The photosynthetic performance of a helical tubular photobioreactor ("Biocoil"), incorporating the filamentous cyanobacterium Spirulina platensis, was investigated. The photobioreactor was constructed in a cylindrical shape (0.9 m high) with a 0.25-m(2)basal area and a photostage comprising 60 m of transparent PVC tubing of 1.6-cm inner diameter (volume = 12.1 L). The inner surface of the cylinder (area = 1.32 m(2)) was illuminated with cool white fluorescent lamps; the energy input of photosynthetically active radiation(PAR, 400 to 700 nm) into the photobioreactor was 2920 kJ per day. An air-lift system ncorporating 4%CO(2) was used to circulate the growth medium in the tubing. The maximum productivity achieved in batch culture was 7.18 g dry biomass per day [0.51 g . d biomass/L . day, or 5.44 g . d biomass/m(2)(inner surface of cylindrical shape)/day] which corresponded to a photosynthetic (PAR) efficiency of 5.45%. The CO(2) was efficiently removed from the gaseous stream; monitoring the CO(2) the outlet and inlet gas streams showed a 70% removal of CO(2) from the inlet gas over an 8-h period with almost maximum growth rate. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号