首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biochemical basis of specializations for dispersal vs. reproduction is an understudied aspect of dispersal polymorphism in insects. Using a radiolabelled amino acid, we quantified differences in in vivo amino acid metabolism between morphs of the wing-polymorphic cricket, Gryllus firmus, that trade-off early age reproduction and dispersal capability. Studies were conducted in crickets fed a variety of diets expected to influence amino acid and lipid metabolism. On the day of molt to adulthood, prior to the morph-specific trade-off between ovarian growth and biochemical preparation for flight (e.g. biosynthesis of triglyceride flight fuel), morphs did not differ in any aspect of amino acid metabolism. However, on day 5 of adulthood, when the morph-specific trade-off between ovarian growth and flight fuel production was manifest, the morphs differed substantially in each of the three aspects of amino acid metabolism studied: conversion to protein, oxidation, and conversion to lipid. Morphs also differed in degree of allocation of products of amino acid metabolism to ovaries vs. the soma. Most importantly, morphs differed in the relative metabolism of radiolabelled glycine through these pathways (i.e. biochemical trade-offs), and in the relative allocation of end products of amino acid metabolism to the soma vs. ovaries (allocation trade-offs). A functionally important interaction between amino acid and lipid metabolism was noted: greater oxidation of amino acids in the flight-capable morph spared fatty acids for enhanced conversion into triglyceride flight fuel. By contrast, greater oxidation of fatty acids by the flightless morph spared amino acids for enhanced conversion into ovarian protein. Diet significantly affected amino acid metabolism. However, MORPHxDIET interactions were rare and morphs differed in amino acid metabolism to a similar degree under the range of diets tested.  相似文献   

2.
Although a considerable amount of information is available on the ecology and physiology of wing polymorphism, much less is known about the biochemical-genetic basis of morph specialization for dispersal versus reproduction. Previous studies have shown that the dispersing morph of the wing-polymorphic cricket, Gryllus firmus, prioritizes the accumulation of triglyceride flight fuel over ovarian growth, while the opposite occurs in the flightless morph during the first week of adulthood. In this study, we compared the in vivo rate of lipid oxidation between genetic stocks of flight-capable versus flightless morphs to determine the role of lipid catabolism in morph specialization for flight versus reproduction. During the first five days of adulthood, in the absence of flight, fatty acid oxidation was substantially lower in the dispersing morph relative to the flightless morph, when either radiolabeled acetate or palmitate was used as a substrate. Differences between the morphs in fatty acid oxidation were genetically based, occurred co-incident with morph-specific differences in triglyceride accumulation and ovarian growth, and were observed on a variety of diets. A genetically based trade-off in the relative conversion of palmitate into CO(2) versus triglyceride was observed in morphs of G. firmus. Decreased oxidation of fatty acid and increased biosynthesis of triglyceride, both appear to play an important role in flight fuel accumulation, and hence morph specialization for flight. Conversely, increased oxidation of fatty acid likely fuels the enhanced ovarian growth in the flightless morph. The results of the present study on fatty acid catabolism, and previous studies on triglyceride and phospholipid biosynthesis, provide the first direct evidence that genetically based differences in in vivo flux through pathways of intermediary metabolism underlie a trade-off between flight capability and reproduction--a trade-off of central importance in insects.  相似文献   

3.
The flight-capable morph of the wing-polymorphic cricket, Gryllus firmus, accumulated a substantially greater quantity of total lipid and triglyceride, compared with the obligately flightless morph, during the first five days of adulthood. Increased lipid accumulation in the flight-capable morph was genetically based, and was produced when ovarian growth is substantially reduced in that morph. Temporal changes in lipid levels suggest that the higher triglyceride reserves in the flight-capable morph fed a high-nutrient diet were produced by elevated lipid biosynthesis. By contrast, on a low-nutrient or high carbohydrate diet, increased lipid levels in the flight-capable morph appeared to result primarily from decreased lipid utilization. Increased biosynthesis or retention of triglyceride (the major flight fuel in Gryllus) by the flight-capable morph may significantly divert nutrients from egg production and hence may be an important physiological cause of its reduced ovarian growth. The obligately flightless morph allocated a greater proportion of total lipid to phospholipid than did the flight-capable morph. No functionally-significant differences in total lipid or triglyceride were produced between morphs during the last nymphal stadium. A second flightless morph, derived from the flight-capable morph by histolysis of flight muscles during adulthood, also had reduced amounts of total lipid and triglyceride but increased ovarian growth compared with the flight capable morph on the standard (high-nutrient) diet. Important qualitative and quantitative aspects of lipid metabolism differ genetically between the flight-capable and flightless morphs of G. firmus and likely contribute importantly to their respective adaptations for flight capability vs. reproduction. This is the first study to document genetically-based differences in energy reserves between morphs of a complex (phase, caste, flight) polymorphism in which morphs also differ genetically in key life history traits.  相似文献   

4.
The flight-capable morph of the wing-polymorphic cricket, Gryllus firmus, exhibited significantly higher activities of each of five lipogenic enzymes compared with the obligately flightless morph on a standard and a high-carbohydrate diet during early adulthood. Similarly, the rate of incorporation of [14C]-acetate into total lipid was higher in the flight-capable morph during this time. By contrast, activities of lipogenic enzymes and rates of lipid biosynthesis, in general, did not differ between morphs on a low nutrient diet during early adulthood. Differences in lipid biosynthesis account for previously documented differences in lipid reserves between morphs on some, but not all, diets. Results of the present and previous studies indicate that increased lipid biosynthesis in the flight capable morph on standard and high-carbohydrate diets constitutes an important adaptation for flight (production of lipid flight fuel). Lipid biosynthesis is negatively correlated with ovarian growth, and may be an important biochemical component of the trade-off between flight capability and ovarian growth in G. firmus. Morphs also differed in activities of three enzymes of lipid catabolism. However, the extent to which variation in activities of these enzymes between morphs results in variation in lipid catabolism is unclear. Finally, the flight-capable morph had a substantially higher activity of alanine aminotransferase in the fat body. Amino acids may be utilized for lipid biosynthesis or energy production to a greater degree in the dispersing morph compared with the oligately flightless morph. This study is the first to document differences in intermediary metabolism that underlie adaptations of morphs of a dispersal-polymorphic species for flight vs. egg production.  相似文献   

5.
Although a considerable amount of information is available on the ecology, genetics, and physiology of life-history traits, much more limited data are available on the biochemical and genetic correlates of life-history variation within species. Specific activities of five enzymes of lipid biosynthesis and two enzymes of amino acid catabolism were compared among lines selected for flight-capable (LW[f]) versus flightless (SW) morphs of the cricket Gryllus firmus. These morphs, which exist in natural populations, differ genetically in ovarian growth (100-400% higher in SW) and aspects of flight capability including the size of wings and flight muscles, and the concentration of triglyceride flight fuel (40% greater in LW[f]). Consistently higher activity of each enzyme in LW(f) versus SW-selected lines, and strong co-segregation between morph and enzyme activity, demonstrated genetically based co-variance between wing morph and enzyme activity. Developmental profiles of enzyme activities strongly paralleled profiles of triglyceride accumulation during adulthood and previous measures of in vivo lipid biosynthesis. These data strongly imply that genetically based elevation in activities of lipogenic enzymes, and enzymes controlling the conversion of amino acids into lipids, is an important cause underlying the elevated accumulation of triglyceride in the LW(f) morph, a key biochemical component of the trade-off between elevated early fecundity and flight capability. Global changes in lipid and amino-acid metabolism appear to have resulted from microevolutionary alteration of regulators of metabolism. Finally, strong genotype x environment (diet) interactions were observed for most enzyme activities. Future progress in understanding the functional causes of life-history evolution requires a more detailed synthesis of the fields of life-history evolution and metabolic biochemistry. Wing polymorphism is a powerful experimental model in such integrative studies.  相似文献   

6.
The wing-polymorphic cricket, Gryllus firmus, has a flight-capable morph (LW[f]: long winged with functional flight muscles) and a flightless morph (SW: short winged with reduced nonfunctional flight muscles) that differ genetically in many aspects of lipid metabolism. To determine whether these differences result from genetically based alterations in endocrine regulation, the juvenile hormone mimic, methoprene, was applied to the LW(f) morph. This hormone manipulation converted the LW(f) morph into a SW phenocopy with respect to all aspects of lipid metabolism studied; that is, methoprene application decreased in vivo biosynthesis of total lipid and triglyceride, increased absolute and relative biosynthesis of phospholipid, increased oxidation of fatty acids, and decreased in vitro specific activities of each of six lipogenic enzymes and a transaminase. Furthermore, methoprene increased ovarian growth and decreased fat body mass and flight muscle mass in the LW(f) morph. Differences in each of these biochemical, morphological, or reproductive traits between hormone-treated and control LW(f) females were similar in magnitude to differences between unmanipulated LW(f) and SW females. Variation in endocrine regulation contributes significantly to genetically based differences in lipid metabolism between LW(f) and SW females. This is the first evidence for endocrine regulation of a genetically based life-history trade-off operating via hormonal effects on specific metabolic pathways and enzymes of intermediary metabolism.  相似文献   

7.
Female Gryllus assimilis subjected to 4.5-7.7h continuous tethered flight had significantly lower amounts of total lipid, triglyceride and total soluble carbohydrate compared with unflown controls. A much greater amount of total lipid (6.3mg) was used during flight compared with carbohydrate (0.14mg). Flown individuals also had substantially reduced amounts of injected, radiolabeled [(14)C]-oleic acid. Activities of lipid, carbohydrate and amino acid catabolizing enzymes in flight muscles of G. assimilis and its wing-polymorphic congener, G. firmus, were very similar to activities in insects which primarily utilize lipid to power flight. By contrast, enzyme activities were very different from those in insects which primarily or exclusively use carbohydrate or proline as a flight fuel. These results strongly implicate lipid as the major flight fuel in Gryllus. Previous studies have shown that lipid levels are higher in flight-capable (long-winged) G. firmus that have small ovaries compared with flightless (short-winged) females that have large ovaries. Results of the present and previous studies collectively indicate that elevated lipid in long-winged G. firmus represents an energetic cost of flight capability which reduces (trade-offs with) reproduction in Gryllus. In G. firmus, mass-specific activities of nearly all enzymes were considerably reduced in underdeveloped, and to a lesser degree in histolyzed muscle, compared with fully-developed flight muscle. An important exception was alanine aminotransferase, whose activity was the highest in histolyzed muscle, and which may be involved in the catabolism of amino acids derived from muscle degradation. Despite the dramatic differences in enzyme activity, electrophoretic profiles of soluble flight-muscle proteins differed only subtly between fully-developed and underdeveloped or histolyzed flight muscles.  相似文献   

8.
Abstract Adult Gryllus assimilis given an analog of juvenile hormone exhibited reduced flight muscles and enlarged ovaries similar to those found in naturally occurring flightless individuals of species that are polymorphic for dispersal capability. Control and hormone-treated (flightless) G. assimilis did not differ in the amount of food consumed or assimilated on any of three diets that differed in nutrient quantity. Thus, enhanced ovarian growth of flightless individuals resulted from increased allocation of internal nutrients to reproduction (i.e., a trade-off) rather than from increased acquisition of nutrients. Compared with flight-capable controls, flightless G. assimilis also had reduced whole-organism respiration, reduced respiration of flight muscles, and reduced lipid and triglyceride (flight fuel) reserves. These differences are remarkably similar to those between naturally occurring flightless and flight-capable morphs of other Gryllus species. Results collectively suggest that the increased allocation of nutrients to ovarian growth in flightless G. assimilis and other Gryllus species results from reduced energetic costs of flight muscle maintenance and/or the biosynthesis or acquisition of lipids. Reduction in these energetic costs appears to be an important driving force in the evolution of flightlessness in insects. Respiratory metabolism associated with flight capability utilizes an increasing proportion of the energy budget of crickets as the quantity of nutrients in the diet is decreased. This leads to a magnification of greater ovarian growth of flightless versus flight-capable individuals on nutrient-poor diets.  相似文献   

9.
Absorption efficiency (AD, approximate digestibility, assimilation efficiency) of various macronutrients and conversion of absorbed nutrients to biomass (ECD) were compared among the two types of flightless morph and the flight-capable morph of the cricket, Gryllus firmus. No biologically significant phenotypic or genetic difference in AD for carbohydrate, protein or lipid was observed among morphs fed either a high-nutrient (100%) or a low-nutrient (25%) diet. Thus, previously-documented differences among adult morphs in carbohydrate and lipid content must be caused by processes other than variation in nutrient absorption by morphs during adulthood. Relative absorption efficiency of total dry mass of food by morphs of G. firmus appears to be a valid indicator of relative AD of total calories. Morphs did not differ phenotypically or genetically in the excretion of end products of nitrogen metabolism (uric acid, hypoxanthine plus xanthine) on either the high nutrient or the low nutrient diet. Nutritional indices corrected for excreted nitrogenous metabolites were very similar to uncorrected indices, and the pattern of variation among the morphs was the same for corrected or uncorrected values. Each of the two types of flightless morph converted a greater proportion of absorbed nutrients into body mass, mainly ovaries, and allocated a smaller proportion of assimilated nutrients to respiration than did the flight-capable morph. Moreover, the trade-off between respiration and early reproduction was substantially magnified on the low nutrient diet. These results extend previous findings of a trade-off between flight capability and early reproduction in wing-polymorphic Gryllus species (1) to diets of very different nutrient quantity, and (2) to flightlessness arising from different causes: blockage of flight muscle development in juveniles vs histolysis of fully-developed flight muscles in adults.  相似文献   

10.
The hormonal basis of variation in life-history traits is a poorly studied topic in life-history evolution. An important step in identifying the endocrine-genetic causes of life-history variation is documenting statistical and functional associations between hormone titers and genotypes/phenotypes that vary in life-history traits. To this end, we compared the blood ecdysteroid titer and the mass of the ovaries during the first week of adulthood among a flight-capable morph and two flightless morphs of the wing-polymorphic cricket Gryllus firmus. Ecdysteroids are a group of structurally related hormones that regulate many important aspects of reproduction in insects. Both the ecdysteroid titer and ovarian mass were significantly higher in each of two flightless morphs compared with the flight-capable morph throughout the first week of adulthood. Genetically based differences in the ecdysteroid titer and ovarian mass between morphs from different selected lines were similar to phenotypically based differences among morphs from the same control (unselected) lines. By day 7 of adulthood, ovaries were typically 200-400% larger and the ecdysteroid titer was 60-300% higher in flightless versus the flight-capable morph. In addition, highly significant, positive, phenotypic correlations were observed between the ecdysteroid titer and ovarian mass in pooled samples of the two flightless and flight-capable crickets from control lines or from selected lines. The ecdysteroid titer was sufficiently elevated in the flightless morphs to account for their elevated ovarian growth. This is the first direct documentation that naturally occurring phenotypes/genotypes that differ in early fecundity, a key life-history trait, also differ phenotypically and genetically in the titer of a key reproductive hormone that potentially regulates that trait.  相似文献   

11.
The wing-polymorphic cricket, Gryllus firmus, contains (1) a flight-capable morph (LW(f)) with long wings and functional flight muscles, (2) a flightless morph with reduced wings and underdeveloped flight muscles (SW), and (3) a flightless morph with histolyzed flight muscles but with fully developed wings (LW(h)). The LW(f) morph differed genetically from the SW morph and phenotypically from the LW(h) morph in the size of flight muscles, ovarian growth during the first week of adulthood, and the hemolymph titer of juvenile hormone (JH). This is the first study to document that phenotypes that differ genetically in morphological aspects of dispersal capability and in ovarian growth also differ genetically in the titer of a hormone that potentially regulates those traits. The JH titer rose 9-100-fold during the photophase in the flight-capable LW(f) morph but did not change significantly during this time in either flightless morph. Prolonged elevation of the in vivo JH titer in flight-capable females, by topical application of a hormone analogue, caused a substantial increase in ovarian growth and histolysis of flight muscles. The short-term, diurnal rise in the JH titer in the dispersing morph may be a mechanism that allows JH to positively regulate nocturnal flight behavior, while not causing maladaptive histolysis of flight muscles and ovarian growth. This is the first demonstration of naturally occurring, genetically based variation for diurnal change in a hormone titer in any organism.  相似文献   

12.
The extent to which modifications in intermediary metabolismcontribute to life history variation and trade-offs is an importantbut poorly understood aspect of life history evolution. Artificialselection was used to produce replicate genetic stocks of thewing-polymorphic cricket, Gryllus firmus, that were nearly pure-breedingfor either the flight-capable (LW[f]) morph, which delays ovariangrowth, or the flightless (SW) morph, which exhibits enhancedearly-age fecundity. LW(f) lines accumulated substantially moretriglyceride, the main flight fuel in Gryllus, compared withSW-selected lines, and enhanced accumulation of triglyceridewas strongly associated with reduced ovarian growth. Increasedtriglyceride accumulation in LW(f) lines resulted from elevatedde novo biosynthesis of fatty acid and two morph-specific trade-offs:(1) greater proportional utilization of fatty acid for glyceridebiosynthesis vs. oxidation, and (2) a greater diversion of fattyacids into triglyceride vs. phospholipid biosynthesis. Eventhough SW lines produced less total lipid and triglyceride,they produced more phospholipid (important in egg development)than did LW(f) lines. Differences between LW(f) and SW morphsin lipid biosynthesis resulted from substantial alterationsin the activities of all studied lipogenic enzymes, a resultthat is consistent with expectations of Metabolic Control Theory.Finally, application of a juvenile hormone analogue to LW(f)females produced a striking SW phenocopy with respect to allaspects of lipid metabolism studied. Global alterations of lipidmetabolism, most likely produced by alterations in endocrineregulation, underlie morph specializations for flight vs. early-agefecundity in G. firmus. Modification of the endocrine controlof intermediary metabolism is likely to be an important mechanismby which intermediary metabolism evolves and contributes tolife history evolution.  相似文献   

13.
14.
沙蟋翅多型性的调控机理   总被引:1,自引:0,他引:1  
沙蟋Gryllus firmus Zera&Denno成虫的后翅有长翅和短翅2种类型,是翅多型性机理研究的极佳模式昆虫。长翅成虫从第5日龄开始迁飞,而短翅成虫的主要特点是繁殖。除了翅的表型差异外,长翅成虫的飞行肌发达,呈褐色;卵巢幼小,直到飞行停止后(大约在10d以后)才开始发育。而短翅成虫的飞行肌退化并呈乳白色;卵巢在第4日龄就发育成熟,表现为卵巢硕大。对翅多型性机理的深入研究,将有利于了解沙蟋迁飞和扩散的内在机理,为准确地预测预报该虫的发生提供重要的理论和实际依据。文章概述沙蟋翅多型性与外界环境的相互关系,以及体内生化代谢和内分泌激素等的变化对该虫迁飞和生殖的影响和作用,进而探讨翅多型的遗传机制和进化意义等问题。  相似文献   

15.
Juvenile hormone titers and reproductive characteristics were measured in adult wing and flight-muscle morphs of the wing-polymorphic cricket, Gryllus firmus, during the first week of adulthood. This species has three morphs: one flight capable morph with fully-developed wings and fully-developed flight muscles [LW(F)], one flightless morph with fully-developed wings and histolyzed (non-functional) flight muscles [LW(H)], and another flightless morph with underdeveloped (short) wings and underdeveloped flight muscles (SW). Both flightless morphs [LW(H) and SW] had larger ovaries which contained a greater number of postvitellogenic eggs compared with the flight capable [LW(F)] morph. The juvenile hormone titer was significantly higher in SW compared with LW(F) females on days 3-7 of adulthood. On these days, the JH titer also was significantly higher in the other flightless morph, LW(H), compared with flight-capable [LW(F)] females as determined by one statistical test, but did not differ significantly by another test. The JH titer was positively correlated with ovarian mass or terminal oocyte length, but not with the number of post-vitellogenic eggs. This study is the first direct comparison of juvenile hormone titers in adult wing morphs of a wing-polymorphic insect. Results indicate that an elevated juvenile hormone titer may be at least partly responsible for one of the most distinctive features of wing-polymorphic species, the increased early fecundity of flightless females.  相似文献   

16.
Virtually no published information exists on insect endocrine traits in natural populations, which limits our understanding of endocrine microevolution. We characterized the hemolymph titers of juvenile hormone (JH) and ecdysteroids (ECDs), two key insect hormones, in field-collected short-winged, flightless (SW) and long-winged, flight-capable (LW(f)) morphs of the cricket Gryllus firmus. The JH titer exhibited a dramatic circadian rhythm in the LW(f) morph but was temporally constant in the flightless SW morph. This pattern was consistent in each of three years; in young, middle-aged, and older G. firmus; and in three other cricket species. The ECD titer was considerably higher in SW than in LW(f) females but did not exhibit temporal variation in any morph and did not differ between male morphs. JH and ECD may control different aspects of the morph-specific trade-off between nocturnal dispersal and reproduction. Results confirm and extend laboratory studies on young female G. firmus; most, but not all, important aspects of morph-specific differences in JH and ECD titers can be extrapolated from field to laboratory environments and vice versa. Hormone titers in Gryllus are more complex than those proposed in evolutionary endocrine models. Directly measuring hormone titer variation remains a fundamentally important task of insect evolutionary endocrinology.  相似文献   

17.
18.
The hemolymph juvenile hormone (JH) titer was measured in over 500 flight-capable and flightless, adult female Gryllus firmus at 3-6 h intervals during each of days 2-8 of adulthood. The flight-capable morph exhibited a large-amplitude daily cycle in the hemolymph JH titer, while the flightless morph exhibited a barely perceptible cycle. The JH titer cycle was observed on all days in the flight-capable morph, but the large amplitude cycle (>15-20 fold increase in mean titer; >100-fold increase in some individuals), began on day 5. For both the large and small amplitude cycles, the JH titer peaked near the end of the photophase-beginning of the scotophase. The hemolymph ecdysteroid titer did not exhibit a corresponding large amplitude daily cycle, although a low amplitude cycle (1-3-fold change) was seen in both morphs. The large magnitude rise in the JH titer in the flight-capable morph during the photophase was not due to decreased hemolymph volume or JH degradation. Daily cycles in the JH titer may be common, but may have gone unnoticed in other insect species due to restricted temporal sampling. Failure to identify these cycles can result in substantial errors in inferring biological roles for JH. Because JH regulates flight behaviors, morph-specific daily cycles in the JH titer may be especially common in dispersal-polymorphic insects, in which flight is restricted to one morph during a limited period of the day or night. However, because JH regulates numerous biological traits, analogous cycles may be common in insects exhibiting other types of complex (e.g. caste or phase) polymorphism, in which morphs differ in a biological characteristic that is restricted to a specific period of the photophase or scotophase.  相似文献   

19.
Nutritional indices, triglyceride levels and flight muscle developmental profiles were compared between long-winged (LW) and short-winged (SW; flightless) morphs of the cricketsGryllus rubens Scudder andG. firmus Scudder. This was done to identify potential physiological costs of flight capability in adults. The LW morph of each species converted a lower proportion of assimilated nutrients into biomass (reduced ECD) than did the SW morph. This documents increased respiratory metabolism in the LW morph. Triglyceride concentration was higher in LW vs. SW adults. This suggests that the elevated respiration in the LW morph may be at least partially due to the increased biosynthesis of this high energy substance. Preliminary data indicate higher respiration rates of LW functional vs. SW vestigial flight muscles. Collectively, these data suggest that the energetic cost of flight capability in adults results from biosynthesis of triglyceride flight fuel and flight muscle maintenance but not flight muscle growth. No flight muscle growth was observed in adults.  相似文献   

20.
Although a considerable amount of information is available on tradeoffs in wing-polymorphic insects, only limited data are available on the relationship between flight and biochemical variation within species. In the current study, we compared the biochemical basis in the dorsolongitudinal flight muscle of the wing-dimorphic sand cricket, Gryllus firmus Scudder, with respect to tradeoffs in energy resources related to morph-specific flight, including glycogen, trehalose, and triglycerides. Our results show that levels of glycogen and trehalose in long-winged adults (LW[f]) were significantly higher before dispersal, on days 5 and 7. Considering that this is the period during which long-winged adults are flight-capable, these results suggest that both glycogen and trehalose are important to flight. However, levels of triglycerides in short-winged crickets (SW) were higher than in long-winged crickets, suggesting that triglycerides are not directly related to initial flight. In SW adults, triglyceride content on days 5 and 7 was significantly higher just before lights off than at the same time on day 1 or at any other time after lights on all other days. This suggests that triglycerides are probably related to reproductive behaviors, such as mating and oviposition, in the SW morph. In addition, flight muscle water content was significantly lower in the LW(f) morph than in the SW morph.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号