首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以不同发育时期灵武长枣为试材,测定果实生长发育过程中叶片、果柄可溶性糖含量及蔗糖代谢相关酶活性的变化,探讨果实生长发育过程中叶片、果柄糖的积累与蔗糖代谢相关酶活性的关系。结果表明:(1)灵武长枣叶片、果柄均主要以积累蔗糖为主,叶片、果柄中葡萄糖和果糖含量的变化平缓且随果实发育略有上升,蔗糖含量则呈先下降后迅速上升的趋势,且蔗糖含量始终高于葡萄糖和果糖的含量。(2)在果实的整个发育期,叶片和果柄的酸性转化酶(AI)活性均远高于中性转化酶(NI),AI在前期升高后变化较平稳,而蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性的变化各不相同。(3)SS分解方向酶活性(SSd)对叶片和果柄蔗糖的积累具有重要的调节作用。研究认为,蔗糖合成酶分解方向酶活性(SSd)对灵武长枣叶片和果柄蔗糖的积累起主要的调控作用。  相似文献   

2.
宁夏枸杞果实糖积累和蔗糖代谢相关酶活性的关系   总被引:9,自引:2,他引:7  
通过对枸杞果实发育过程中果实生长模式、蔗糖、果糖、葡萄糖和淀粉含量及糖代谢相关酶活性的测定,研究了宁夏枸杞果实生长发育过程中糖的代谢积累与相关酶活性的关系.结果表明:(1)宁夏枸杞果实发育呈双S"曲线,果实主要以积累己糖为主.(2)蔗糖磷酸合成酶(SPS)活性在果实发育初期处于下降的趋势,在花后19d开始上升,果实转色后又逐渐下降;蔗糖合成酶(SS)活性总体表现为SS分解方向的活性大于SS合成方向的活性,说明枸杞果实发育过程中,SS的活性主要以分解方向的为主;酸性转化酶(AI)和中性转化酶(NI)的活性随果实发育呈上升趋势,但在果实成熟后期有所下降,且AI和NI活性高于合成酶类的活性,较高的转化酶类活性促进了果实内部己糖的积累.(3)在枸杞果实生长发育中,葡萄糖和果糖含量与AI和NI均呈极显著正相关,而与其它酶不具有相关性.说明AI和NI在宁夏枸杞果实的糖代谢中起着主要的调控作用.  相似文献   

3.
采用营养液水培法,用100、300和500 mg·L-1不同浓度的水杨酸(SA)处理‘辽园多丽’番茄幼苗,测定在NaCl胁迫下番茄幼苗叶片果糖、葡萄糖、蔗糖含量和蔗谢代谢相关酶活性(酸性转化酶AI、中性转化酶NI、蔗糖磷酸合成酶SPS、蔗糖合成酶活性SS)的变化.结果表明:SA处理叶片可以维持或提高NaCl胁迫条件下番茄幼苗叶片果糖、葡萄糖含量及AI、NI、SPS和SS活性,其最高值分别比单纯NaCl处理植株增加30.0%、31.1%、24.7%、27.9%、22.0%和24.5%;但对NaCl胁迫条件下番茄幼苗叶片蔗糖含量的影响不大.表明水杨酸可以通过提高NaCl胁迫下番茄叶片转化酶活性来提高番茄叶片果糖和葡萄糖含量,从而缓解NaCl胁迫对番茄的伤害,其中以500 mg·L-1的SA处理效果较理想.  相似文献   

4.
套袋对梨果实发育过程中糖组分及其相关酶活性的影响   总被引:3,自引:0,他引:3  
以翠冠和黄金梨为试材,测定套袋和未套袋(对照)梨果实发育时期果实中蔗糖、葡萄糖、果糖和山梨醇含量以及蔗糖代谢相关酶酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分积累与酶活性的关系进行了分析.结果表明:(1)两梨品种套袋果实在发育过程中蔗糖、葡萄糖、果糖、山梨醇和糖代谢相关酶活性变化趋势与对照基本一致,套袋果实糖含量均低于对照但差异不显著,而各相关酶活性在两类果实间差异表现各异.(2)在梨果实发育早期,果实中以分解酶类为主,糖分积累低;发育后期以合成酶类为主,糖分积累多.(3)两品种套袋和对照果实AI活性与葡萄糖含量均呈显著或极显著正相关,SS合成方向活性与蔗糖含量均为极显著正相关,且翠冠对照果SPS活性与蔗糖含量呈极显著正相关.可见,套袋通过提高果实发育早期转化酶(Inv)活性,降低果实后期蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)的活性来影响糖分积累,从而影响梨果品质.  相似文献   

5.
枇杷果实发育过程中糖积累及相关酶活性变化研究   总被引:1,自引:0,他引:1  
以'青种'、'霸红'和'鸡蛋白'3个枇杷品种为材料,测定不同果实发育时期果实中蔗糖、葡萄糖和果糖含量以及蔗糖代谢相关酶即酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖积累与酶活性的关系进行了分析.结果表明:在果实膨大期(5月3日)之前,3种枇杷果实的蔗糖、葡萄糖和果糖积累缓慢,之后则迅速积累,存在着明显的转折点;果实成熟(5月23日)之后糖分积累速度趋于平稳.3种枇杷果实在发育过程中转化酶、蔗糖合成酶和蔗糖磷酸合成酶的活性变化与3种糖积累的动态变化趋势相一致.NI和AI活性在果实膨大期之前都较低且没有明显的变化,之后均快速上升;SS和SPS的活性在果实膨大期之前都很低且几乎无变化,随后'鸡蛋白'的活性迅速上升至果实成熟之后便缓慢上升,而'青种'和'霸红'随果实成熟度的增加而升高,但均低于'鸡蛋白'.可见,枇杷果实膨大期是糖分积累代谢活跃期,其糖积累受蔗糖代谢相关酶综合调控.  相似文献   

6.
以‘台农1号’芒果为材料,测定了果实生长发育过程中淀粉、蔗糖、葡萄糖和果糖含量以及淀粉酶、蔗糖代谢相关酶———酸性转化酶(AI)、中性转化酶(NI)、蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)的活性,并对果实中糖组分与酶活性的关系进行了分析.结果显示,(1)台农1号芒果果实属于单S型生长曲线,发育前期主要积累淀粉、葡萄糖和果糖,果实成熟软化时,淀粉酶活性降至最低,淀粉水解,蔗糖快速积累.(2)酸性转化酶活性在果实整个发育过程中维持最高,完熟时略有降低;蔗糖磷酸合成酶在果实发育前期略有降低,完熟时升至最高;蔗糖合成酶和中性转化酶活性在整个发育期一直很低且较稳定.(3)淀粉含量与淀粉酶活性呈显著正相关,与SPS活性呈极显著负相关,蔗糖、葡萄糖含量均与SPS、SS呈显著、极显著的正相关;果糖含量与SS呈极显著的正相关.研究表明,芒果成熟时淀粉分解、酸性转化酶活性的降低,且蔗糖合成酶和蔗糖磷酸合成酶活性的增加是引起果实蔗糖积累的主要因子.  相似文献   

7.
In lyophilized needles of Norway spruce ( Picea abies [L.] Karsten) and starting from bud break, we determined enzyme activities (sucrose phosphate synthase [SPS; EC 2.4,1.14]. sucrose synthase [SS; EC 2.4,1.13]. acid invertase [AI; EC 3.2,1.26]) and intermediates (starch, sucrose, glucose, fructose; fructose 6-phosphate, fructose 2.6-bisphosphate [F26BP]) of carbohydrate metabolism together with needle weight, shoot length, chlorophyll and protein. For up to 110 days after bud break, samples were taken twice a week from about 25-year-old trees under field conditions. At least three periods can be distinguished during needle maturation. During the first period (up to 45 days after bud break) Al showed the highest extractable activity. This coincided with very high levels of F26BP (up to 11 pmol [mg dry weight]−1) and a transient increase of starch in parallel to a decrease of sucrose. The interval between 45 and 70 days after bud break was characterized by high SS activity (ratio of fructose/glucose >1), much decreased levels of F26BP (down to below 1 pmol [mg dry weight]−1), and a pronounced increase in the dry weight/fresh weight ratio. In parallel, starch declined and soluble carbohydrates increased. Finally, needle maturation was characterized by decreasing SS and continuously increasing SPS activities, so that the ratio of SPS/SS increased more than 6-fold. AI. however, did not decline with maturation. Changes in pool sizes of metabolites and enzyme activities (AI. SPS) are consistent with current concepts on sink/source transition. SS is obviously important with regard to the synthesis of structural polysaccharides.  相似文献   

8.
干旱胁迫对宁夏枸杞生长及果实糖分积累的影响   总被引:1,自引:0,他引:1  
文章研究不同干旱胁迫下宁夏枸杞生长及果实糖分积累的变化规律,为宁夏枸杞在干旱地区高产栽培提供参考依据。采用盆栽控水试验,设置正常灌水、轻度干旱、中度干旱和重度干旱处理,研究了干旱胁迫对宁夏枸杞植株生长、生物量分配以及果实糖分积累的影响。结果表明:干旱抑制宁夏枸杞新稍、果实、株高和地径的生长:随着干旱程度加剧,根和茎中干物质分配率逐渐升高,而枝条、叶和果实中干物质分配率大幅降低;轻度干旱有利于果实发育过程中果糖的积累,中度和重度干旱胁迫则不利于成熟期果糖和蔗糖积累;干旱胁迫明显降低成熟期转化酶、蔗糖磷酸合成酶(SPS)和蔗糖合成酶(SS)的活性;果实发育过程中果糖的含量与SPS和转化酶活性存在极显著相关。可见,在果实发育期,土壤含水量为田间持水量55%以上,能促进宁夏枸杞果实中糖分积累,有效提高果实品质。  相似文献   

9.
该研究以甘草幼苗为试材,采用盆栽自然干旱方法,设计对照(CK)、轻度(LS)、中度(MS)、重度(SS)干旱胁迫处理,测定分析甘草叶片的渗透调节物质及蔗糖代谢相关酶[蔗糖磷酸合成酶(SPS)、蔗糖合成酶合成方向(Ss+)、蔗糖合成酶分解方向(Ss-)、中性转化酶(NI)、酸性转化酶(AI)、淀粉磷酸化酶(SP)]活性的变化,以探讨甘草的渗透调节特性以及糖分调节的酶学机制,揭示甘草对干旱胁迫的响应机理。结果显示:(1)随着干旱胁迫程度的加剧,甘草叶片可溶性糖、可溶性蛋白和脯氨酸含量呈逐渐增加的趋势,束缚水/自由水的比值呈先增加后降低的趋势。(2)随着干旱胁迫程度的加剧,甘草叶片蔗糖、葡萄糖、果糖含量均呈先升高后降低的趋势,但不同胁迫强度出现峰值的时间不同;其中在CK和LS干旱胁迫时蔗糖含量淀粉含量葡萄糖含量果糖含量,在MS和SS干旱胁迫时淀粉含量葡萄糖含量蔗糖含量果糖含量,表明随着干旱程度的增加,甘草叶片中蔗糖转化成了淀粉。(3)随着干旱胁迫程度的加重,甘草叶片的SPS活性呈先升高后降低的趋势,Ss活性和Inv(蔗糖转化酶)活性呈逐渐升高的趋势,SP活性呈逐渐降低的趋势;各胁迫处理的Ss+活性与CK差异不显著,而Ss-活性与CK差异显著,并且Ss-活性在各胁迫处理下远大于Ss+活性,表明甘草叶片Ss-活性在蔗糖代谢过程中占主导作用。(4)相关分析结果显示,在LS中,NI与蔗糖呈负相关关系,Ss-与淀粉呈显著正相关关系、与蔗糖呈负相关关系;在MS中,蔗糖和葡萄糖与SPS、Ss+、Ss-、NI和AI均呈正相关关系,与SP呈负相关关系;在SS中,SP和NI与蔗糖呈正相关关系,而与淀粉呈负相关关系;表明在轻度干旱处理下,Ss参加了蔗糖的分解,继而合成淀粉;在中度和重度干旱条件下,SP主要催化淀粉的分解来增加蔗糖含量以此平衡蔗糖代谢。  相似文献   

10.
The effect of low temperature on sugar content and activities of key enzymes related to sucrose metabolism in grape (Vitis vinifera L.) branches during overwintering covered with soil was investigated. We measured the contents of soluble sugar and the activities of sucrose-phosphate synthase (SPS), sucrose synthase (SS), acid invertase (AI) and neutral invertase (NI) of three grape varieties with different freezing tolerance, Beta, Vidal and Merlot, in October, 2011, January, 2012 and March, 2012. The result showed that: total soluble sugar had the significant negative correlation, ?0.988, with temperature during overwintering covered with soil. The content of hexose was about twofold content of sucrose in January, while sucrose increased and the hexose decreased to a very low level in March, the ratios between hexose and sucrose declined to 0.26, 0.15 and 0.18. Sucrose was more important than hexose in protecting grape branches from cold injury under low temperature, but non-freezing. The accumulation of sucrose was mostly due to the elevation of the SPS activity, whereas the increase of hexose was due to the enhanced AI activity. Three grape varieties responded to low temperature positively as reflected by the variations of physiological and biochemical characteristics, such as superoxide dismutase, catalase and proline. Besides, by the principal components analysis and combined with cultivation practices, among twelve characteristics, the sugar metabolism mainly contributed to the difference of the cold resistance. The results indicated that sucrose metabolism regulation played an important role during overwintering covered with soil, and it was the key factor to explain the difference of cold resistance.  相似文献   

11.
Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and stable wheat yield and drought tolerance.  相似文献   

12.
甜高粱茎秆不同节间糖分累积与相关酶活性的变化   总被引:2,自引:0,他引:2  
为了进一步了解甜高粱茎秆糖分代谢的规律,利用高效液相色谱等方法测定了考利、拉马达和MN-2747等3个甜高粱品种成熟期6个节间果糖、葡萄糖和蔗糖含量以及中性转化酶(NI)、可溶性酸性转化酶(SAI)、蔗糖磷酸合成酶(SPS)和蔗糖合成酶(SS)的酶活性,并对其变化规律和相关性进行了分析。结果表明:不同品种间,果糖、葡萄糖和蔗糖含量变化范围较大,分别为2.32~4.34mg/g、2.30~4.14mg/g和35.92~95.92mg/g。随着节间的变化,3个品种果糖和葡萄糖均呈现"U"型变化趋势,而蔗糖无明显的变化规律,只是略有增高的趋势。3个品种成熟期茎秆中NI、SAI、SPS和SS酶活性普遍较低,随着节间的提高均呈现降低的趋势。节间蔗糖含量与SAI酶活性呈显著负相关(R=-0.71,P0.01),与NI、SPS和SS酶活性无明显相关性。SAI可能为甜高粱茎秆糖分代谢的关键调控酶。  相似文献   

13.
套作大豆苗期茎秆纤维素合成代谢与抗倒性的关系   总被引:1,自引:1,他引:0  
为从茎秆强度的角度研究套作大豆苗期对荫蔽胁迫的响应及耐荫抗倒机制,采用耐荫性不同的3个大豆材料,在玉米大豆套作和单作两种种植模式下,对茎秆的纤维素、可溶性糖、蔗糖、淀粉含量及蔗糖代谢中关键酶活性以及茎秆抗折力、抗倒伏指数等进行测定,研究它们与套作大豆苗期倒伏的关系.套作大豆苗期倒伏严重,茎秆抗折力、抗倒伏指数、纤维素、可溶性糖、蔗糖、淀粉含量和相关酶活性均显著低于单作.不同大豆材料受套作荫蔽影响程度不同,强耐荫性大豆南豆12茎秆抗折力降低幅度最小,在套作环境下其茎秆抗折力、抗倒伏指数大,纤维素、可溶性糖、蔗糖、淀粉含量高,酶活性强.相关分析表明: 套作大豆苗期茎秆糖含量均与抗折力呈极显著正相关,与倒伏率呈极显著负相关;蔗糖含量与蔗糖磷酸合酶(SPS)、蔗糖合酶(SS)、中性转化酶(NI)活性呈极显著正相关,与酸性转化酶(AI)活性相关性不显著;纤维素含量与SPS、SS呈极显著正相关,与NI呈显著正相关,与AI相关性不显著.套作环境下,强耐荫性大豆苗期茎秆中较高的SPS、SS活性是其维持高蔗糖和纤维素含量的酶学基础,而高纤维素含量有利于提高茎秆强度,进而增强其抗倒伏能力.本研究应用玉米大豆套作种植系统,从苗期抗倒角度,探明了光环境对不同基因型大豆茎秆纤维素代谢的影响机制,为下一步筛选耐荫抗倒大豆品种提供了理论依据.  相似文献   

14.
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in 'response' to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.  相似文献   

15.
网纹甜瓜发育果实糖分积累与蔗糖代谢参与酶的关系   总被引:29,自引:0,他引:29  
随着网纹甜瓜果实的发育,果实中葡萄糖和果糖的含量增加,蔗糖的快速积累发生在果实发育的中后期,高蔗糖积累型果实中蔗糖积累速率明显快于低蔗糖积累型.蔗糖磷酸合成酶活性在果实发育的前期短暂下降, 而后稳步上升,在果实发育的中后期高蔗糖积累型果实中该酶的活性显著高于低蔗糖积累型果实;随着果实发育,蔗糖合成酶的分解活性降低而合成活性升高.酸性和中性转化酶在未成熟果实中活性较高,而在成熟果实中很低; 高蔗糖积累型果实中酸性转化酶活性显著低于同期低蔗糖积累型果实.合成蔗糖的酶活性小于分解蔗糖的酶活性时蔗糖几乎没有积累.根据这些结果推测,转化酶活性的下降、蔗糖磷酸合成酶活性的增加以及蔗糖合成酶分解活性的下降和合成活性的增加,是引起果实蔗糖积累的主要内在因子.  相似文献   

16.
Evergreen plants need to store reserves to allow for their survival during the winter months and for new leaf growth in the following spring. In many of the tree species, these reserve functions are mainly carried out by starch, which is degraded to soluble carbohydrates during the dormant season to maintain active respiration and provide protection against freezing. In the present study, two evergreen woody plants, S. przewalskii Kom. (SP) and S. chinensis (Lin.) Ant.(SC), were used to investigate the patterns of seasonal variation in the concentrations of soluble sugars, sucrose, fructose and starch, and the activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI). Foliar soluble sugar, sucrose, fructose, and starch concentrations were markedly higher in SC than in SP; moreover, the activities of SPS, SUSY, NI and SAI were also higher in SC than in SP. There were generally higher concentrations of soluble sugars, sucrose and fructose and SPS activities in the winter than in the summer for both Sabina trees, which was consistent with the necessity for protection against freezing; however, opposite results were found with regards to starch concentrations and the activities of SUSY, NI and SAI. In contrast with the activities of SUSY, NI and SAI, the negative correlation observed between SPS and air temperature was likely a reflection of its crucial role in the acquisition of freezing tolerance by sucrose metabolism in the winter. These results suggest that higher carbon reserves do not give S. chinensis (Lin.) Ant. a competitive advantage in tolerating cold temperatures and that only SPS, but not SUSY, NI and SAI, may play a positive role in freezing tolerance by increasing soluble sugar.  相似文献   

17.
The influence of exogenously applied sucrose on cold hardening of raspberry ( Rubus idaeus L.) in vitro was examined. Raspberry plants (cv. Preussen) were cultured on Murashige-Skoog (MS) media with different levels (1, 3, 5 and 7%) of sucrose and subjected to low-temperature acclimation (3/−3°C day/night temperature, 8-h photoperiod) for 14 days. Cold hardiness (LT50 in controlled freezing), shoot moisture content, osmolality and the amounts of sucrose, glucose and fructose were determined. Exogenously applied sucrose was taken up by plants, but the uptake corresponded to less than 10% of total sugar reserves in the culture. Cold hardiness was primarily affected by acclimation treatment, but sucrose increased cold hardiness of nonacclimated plants and significantly enhanced the effect of acclimation treatment, 5% sucrose in the culture medium being optimal for cold hardening. LT50 values ranged between −4.1 and −7.1°C for nonacclimated, and between −14.2 and −20.7°C for cold-acclimated shoots. Shoot moisture content was inversely related to medium sucrose level and declined only slightly during cold acclimation. After cold acclimation, plant osmolality predicted hardiness better than shoot moisture content. Plant osmolality and sugar content were increased by increasing the medium sucrose level and, to a greater extent, by cold acclimation. Sucrose, glucose and fructose accumulated during hardening. Sucrose was the predominant sugar, and the rate of sucrose accumulation during cold acclimation was independent of the medium sucrose level or the initial plant sucrose content. A close correlation between cold hardiness and total sugars, sucrose, glucose and fructose was established. These results suggest that sugars have more than a purely osmotic effect in protecting acclimated raspberry plants from cold.  相似文献   

18.
In the present study the cold acclimation potential of two accessions of Arabidopsis thaliana was investigated. Significant variation was found for basic tolerance as well as the capacity to acclimate to freezing temperatures. During cold acclimation, levels of soluble sugars increased in both genotypes, but raffinose accumulation discriminated the more tolerant accession Col‐0 from C24. Concentrations of other compatible solutes such as proline and glutamine were also higher in cold‐acclimated Col‐0 than C24 plants. Changes of invertase activity during cold exposure corresponded to changes in sucrose and fructose, but not glucose concentrations and were consistent with an initial chilling response and a later decline in hexose metabolization. When vacuolar invertase was suppressed by siRNA expression, reduced sucrolytic activity resulted in elevated leaf sucrose concentration, whereas the fructose content was strongly reduced. This led to elevated freezing tolerance in the cold‐tolerant genotype Col‐0, but not in C24. The most pronounced metabolic changes in invertase‐inhibited Col‐0 plants occurred for proline and glutamine concentrations, indicating indirect metabolic effects of altered sugar concentrations.  相似文献   

19.
以‘翠冠’梨为材料,研究了套双层遮光纸袋梨果实贮藏过程中蔗糖、果糖、葡萄糖、山梨醇及糖代谢中酶活性的变化规律。结果表明,贮藏套袋梨果实中果糖、葡萄糖、山梨醇和蔗糖含量都低于未套袋对照;套袋梨果实中山梨醇脱氢酶活性在贮藏的前5d都低于对照,贮藏10d后活性均高于对照,且与山梨醇含量呈现极显著正相关;贮藏套袋梨果实中蔗糖磷酸合酶(SPS)及蔗糖合酶(SS)分解和合成方向活性都是前期低于对照,贮藏后期都高于对照,且蔗糖含量与蔗糖磷酸合酶和蔗糖合酶(分解方向)活性都呈显著正相关;贮藏的套袋梨果实和对照中的山梨醇含量与果糖含量均呈极显著负相关,蔗糖含量与葡萄糖含量呈极显著负相关,即在贮藏过程中山梨醇可能转化为果糖,而蔗糖则转化成葡萄糖。  相似文献   

20.
研究不同浓度乙酰水杨酸(ASA)对番茄品种‘辽园多丽’果实发育期间蔗糖代谢相关酶影响的结果表明:ASA可抑制果实的维管束和胶质胎座中酸性转化酶(AI)和中性转化酶(NI)活性,而提高蔗糖合成酶(SS)与蔗糖磷酸合成酶(SPS)活性;心室隔壁和中果肉中ASA的作用与此相反。ASA促进果实维管束中可溶性糖积累主要通过调控AI和NI活性实现,而在胶质胎座中主要通过调控SS活性实现;在中果肉和心室隔壁中主要通过调控SS和AI活性实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号