首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The objective of these experiments was to examine short- and long-term (7 d) effects of arginine-deficient diets on free amino acid concentrations in hindlimb muscle of rats. In rats fed the control diet containing arginine (+Arg), muscle alanine and methionine concentrations were higher 1 and 2h after feeding compared to food-deprived rats, whereas branched-chain amino acids, arginine and asparagine concentrations were lower postprandially. In Experiment 1, rats were fed an arginine-deficient (–Arg) diet with glutamate (+Glu) substituted for arginine; alanine (+Ala), ornithine (+Orn) or citrulline (+Cit) were substituted for arginine in Experiment 2. In Experiment 1, arginine concentrations decreased in blood but not in muscle. This contrasts with rats fed –Arg/+Ala or –Arg/+Orn diets which had muscle arginine concentrations less than half the concentrations in controls or in rats fed the –Arg/+Cit diet. Muscle essential amino acids in Experiment 2 did not differ by diet, but muscle branched-chain amino acids were elevated relative to controls in the rats fed –Arg/+Ala or –Arg/+Orn diets; however, rats fed the –Arg/+Cit diet had levels similar to the controls. Also, muscle branched-chain amino acids were correlated with glutamine concentrations in both blood and muscle. The measurements in the post-meal period suggest that muscle amino acid concentrations may more closely reflect dietary amino acid patterns than do blood amino concentrations.Abbreviations BCAA branched-chain amino acids - BCKADH branched-chain ketoacid dehydrogenase - EAA essential amino acids - LNAA large neutral amino acids - NEAA nonessential amino acids - PDV portal-drained viscera - SELSM standard error of least squares means - SSA 5-sulfosalicylic acid - TAA total amino acids Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

2.
We have previously demonstrated that feeding a diet with a high amino acid (60% AA diet) content, as a mixture simulating casein, induced pancreatic growth and pancreatic protease production in rats. In the present study, we examined the effects of an increasing dietary content of essential amino acids (EAA, x1 - x3 in exp. 1 and x1 - x3.3 in exp. 2) and non-essential amino acids (NEAA, x1 - x3 in exp. 1 and x1 - x5.2 in exp. 2) on pancreatic growth, amylase and protease adaptation using casein-type amino acid mixtures (exp. 1, basal diet; 20% AA diet) and egg white-type amino acid mixtures (exp. 2, basal diet; 12% AA diet). Pancreatic growth and trypsin activity were induced as the dietary content of NEAA was increased in experiments 1 and 2. Amylase activity in the pancreas was also induced as the dietary content of NEAA was increased, even with the decrease in dietary carbohydrate in experiment 2. The values of all pancreatic variables decreased with the increase in dietary EAA (x2 and x3) without an increase in NEAA. The changes in the pancreas were coincident with increases in plasma arginine and lysine concentrations and a decrease in the plasma alanine concentration. In rats fed a 60% AA diet (EAA and NEAA x3), in the case of which the EAA content was balanced with the NEAA content, pancreatic growth and protease production increased and reached maximum levels as the plasma amino acid concentrations decreased, except for alanine. These results show that NEAA, not EAA, are associated with induction of pancreatic growth and protease production upon feeding a diet with a high AA content, and that some metabolites may be involved in the induction process. The suppression of pancreatic growth and protease production in rats fed the high EAA diets without balanced NEAA may be associated with impairment of amino acid metabolism rather than the increments in the concentration of one or more essential amino acids. Our results also suggest that there is an unknown mechanism or unknown factors involved in regulating pancreatic amylase.  相似文献   

3.
Citrulline (Cit) actions on muscle metabolism remain unclear. Those latter were investigated using a proteomic approach on Tibialis muscles from male Sprague‐Dawley rats. At 23 months of age, rats were either fed ad libitum (AL group) or subjected to dietary restriction for 12 weeks. At the end of the restriction period, one group of rats was euthanized (R group) and two groups were refed for one week with a standard diet supplemented with nonessential amino acids group or Cit (CIT group). Results of the proteomic approach were validated using targeted Western blot analysis and assessment of gene expression of the related genes. Maximal activities of the key enzymes involved in mitochondrial functioning were also determined. Cit supplementation results in a significant increase in the protein expression of the main myofibrillar constituents and of a few enzymes involved in glycogenolysis and glycolysis (CIT vs. AL and R, p < 0.05). Conversely, the expression of oxidative enzymes from Krebs cycle and mitochondrial respiratory chain was significantly decreased (CIT vs. AL, p < 0.05). However, maximal activities of key enzymes of mitochondrial metabolism were not significantly affected, except for complex 1 which presented an increased activity (CIT vs. AL and R, p < 0.05). In conclusion, Cit supplementation increases expression of the main myofibrillar proteins and seems to induce a switch in muscle energy metabolism, from aerobia toward anaerobia.  相似文献   

4.
为了探讨鸡肉粉完全替代鱼粉时饲料氨基酸的平衡性以及外源氨基酸的添加方式与凡纳滨对虾生长、体成分、血浆游离氨基酸及肌肉氨基酸含量的关系, 本试验采用26因子试验设计进行了为期56d的饲养试验。2个饲料蛋白质水平分别为40%和32%, 6个饲料处理分别为鱼粉组(对照组)、鸡肉粉组、鸡肉粉+晶体EAA组、鸡肉粉+晶体EAA+晶体NEAA组、鸡肉粉+包被EAA组、鸡肉粉+包被EAA+包被NEAA组, 配制12组饲料。将凡纳滨对虾(0.300.01) g随机分配到36个圆桶(150 L)中, 每桶30尾, 每3个桶为一个处理组, 饲喂一种饲料, 每天饱食投喂三次。在每一饲料蛋白质水平下, 无论是补充晶体氨基酸(CAA)组还是包被氨基酸组对虾的增重率均显著高于鸡肉粉组(P0.05), 且在32%蛋白质水平下, 包被EAA组对虾增重率达到了鱼粉组水平(P0.05); 补充晶体EAA+NEAA组对虾增重率与补充晶体EAA组无差异(P0.05), 但均显著低于补充包被氨基酸组(P0.05); 补充包被EAA组对虾增重率显著高于补充包被EAA+NEAA组(P0.05)。饲料系数的变化正好与增重率变化相反(P0.05)。饲喂高蛋白质水平饲料较之饲喂低蛋白质饲料明显提高对虾增重率、虾体蛋白含量(P0.05), 但降低虾体脂肪含量(P0.05)。包被氨基酸组凡纳滨对虾血浆游离氨基酸含量总体显著低于CAA组(P0.05)。除谷氨酸、甘氨酸以及脯氨酸外, 各组对虾肌肉氨基酸含量无显著差异(P0.05)。结果表明, 在32%饲料蛋白质水平下, 用鸡肉粉完全替代鱼粉时, 饲料中补充包被EAA可明显促进凡纳滨对虾的生长, 且达到了鱼粉组的饲喂效果。  相似文献   

5.
Nutritional supplementation with some amino acids may influence host??s responses and also certain mechanism involved in tumor progression. It is known that exercise influences body weight and muscle composition. Previous findings from our group have shown that leucine has beneficial effects on protein composition in cachectic rat model as the Walker 256 tumor. The main purpose of this study was to analyze the effects of light exercise and leucine and/or glutamine-rich diet in body composition and skeletal muscle protein synthesis and degradation in young tumor-bearing rats. Walker tumor-bearing rats were subjected to light aerobic exercise (swimming 30?min/day) and fed a leucine-rich (3%) and/or glutamine-rich (4%) diet for 10?days and compared to healthy young rats. The carcasses were analyzed as total water and fat body content and lean body mass. The gastrocnemious muscles were isolated and used for determination of total protein synthesis and degradation. The chemical body composition changed with tumor growth, increasing body water and reducing body fat content and total body nitrogen. After tumor growth, the muscle protein metabolism was impaired, showing that the muscle protein synthesis was also reduced and the protein degradation process was increased in the gastrocnemius muscle of exercised rats. Although short-term exercise (10?days) alone did not produce beneficial effects that would reduce tumor damage, host protein metabolism was improved when exercise was combined with a leucine-rich diet. Only total carcass nitrogen and protein were recovered by a glutamine-rich diet. Exercise, in combination with an amino acid-rich diet, in particular, leucine, had effects beyond reducing tumoral weight such as improving protein turnover and carcass nitrogen content in the tumor-bearing host.  相似文献   

6.
Citrulline (Cit) is a non-essential amino acid whose metabolic properties were largely ignored until the last decade when it began to emerge as a highly promising nutrient with many regulatory properties, with a key role in nitrogen homeostasis. Because Cit is not taken up by the liver, its synthesis from arginine, glutamine, ornithine and proline in the intestine prevents the hepatic uptake of the two first amino acids which activate the urea cycle and so prevents amino acid catabolism. This sparing effect may have positive spin-off for muscle via increased protein synthesis, protein content and functionality. However, the mechanisms of action of Cit are not fully known, even if preliminary data suggest an implication of mTOR pathway. Further exploration is needed to gain a complete overview of the role of Cit in the control of nitrogen homeostasis.  相似文献   

7.
Dietary nitrogen was traced in rats adapted to a 50% protein diet and given a meal containing 1.50 g (15)N-labeled protein (HP-50 group). This group was compared with rats usually consuming a 14% protein diet and fed a meal containing either 0.42 g (AP-14 group) or 1.50 g (AP-50 group) of (15)N-labeled protein. In the HP group, the muscle nonprotein nitrogen pool was doubled when compared with the AP group. The main adaptation was the enhancement of dietary nitrogen transferred to urea (2.2 +/- 0.5 vs. 1.3 +/- 0.1 mmol N/100 g body wt in the HP-50 and AP-50 groups, respectively). All amino acids reaching the periphery except arginine and the branched-chain amino acids were depressed. Consequently, dietary nitrogen incorporation into muscle protein was paradoxically reduced in the HP-50 group, whereas more dietary nitrogen was accumulated in the free nitrogen pool. These results underline the important role played by splanchnic catabolism in adaptation to a high-protein diet, in contrast to muscle tissue. Digestive kinetics and splanchnic anabolism participate to a lesser extent in the regulation processes.  相似文献   

8.
Heart failure is often characterized by skeletal muscle atrophy. The mechanisms underlying muscle wasting, however, are not fully understood. We studied 30 Dahl salt-sensitive rats (10 male, 20 female) fed either a high-salt (HS; n = 15) or a low-salt (LS; n = 15) diet. This strain develops cardiac hypertrophy and failure when fed a HS diet. LS controls were matched to HS rats for gender and duration of diet. Body mass, food intake, and muscle mass and composition were measured. Skeletal muscle protein synthesis was measured by isotope dilution. An additional group of 27 rats (HS, n = 16; LS; n = 11) were assessed for expression of genes regulating protein breakdown and apoptosis. Gastrocnemius and plantaris muscles weighed less (16 and 22%, respectively) in HS than in LS rats (P < 0.01). No differences in soleus or tibialis anterior weights were found. Differences in muscle mass were abolished after data were expressed relative to body size, because HS rats tended (P = 0.094) to weigh less. Lower body mass in HS rats was related to a 16% reduction (P < 0.01) in food intake. No differences in muscle protein or DNA content, the protein-to-DNA ratio, or muscle protein synthesis were found. Finally, no differences in skeletal muscle gene expression were found to suggest increased protein breakdown or apoptosis in HS rats. Our results suggest that muscle wasting in this model of heart failure is not associated with alterations in skeletal muscle metabolism. Instead, muscle atrophy was related to reduced body weight secondary to decreased food intake. These findings argue against the notion that heart failure is characterized by a skeletal muscle myopathy that predisposes to atrophy.  相似文献   

9.
This study tests the hypothesis that a dose of 6 g of orally administered essential amino acids (EAAs) stimulates net muscle protein balance in healthy volunteers when consumed 1 and 2 h after resistance exercise. Subjects received a primed constant infusion of L-[(2)H(5)]phenylalanine and L-[1-(13)C]leucine. Samples from femoral artery and vein and biopsies from vastus lateralis were obtained. Arterial EAA concentrations increased severalfold after drinks. Net muscle protein balance (NB) increased proportionally more than arterial AA concentrations in response to drinks, and it returned rapidly to basal values when AA concentrations decreased. Area under the curve for net phenylalanine uptake above basal value was similar for the first hour after each drink (67 +/- 17 vs. 77 +/- 20 mg/leg, respectively). Because the NB response was double the response to two doses of a mixture of 3 g of EAA + 3 g of nonessential AA (NEAA) (14), we conclude that NEAA are not necessary for stimulation of NB and that there is a dose-dependent effect of EAA ingestion on muscle protein synthesis.  相似文献   

10.
11.
The roles of oxidative stress and renal superoxide dismutase (SOD) levels and their association with renal damage were studied in Dahl salt-sensitive (S) and salt-resistant (R)/Rapp strain rats during changes in Na intake. After 3 wk of a high (8%)-Na diet in S rats, renal medullary Cu/Zn SOD was 56% lower and Mn SOD was 81% lower than in R high Na-fed rats. After 1, 2, and 3 wk of high Na, urinary excretion of F(2)-isoprostanes, an index of oxidative stress, was significantly greater in S rats compared with R rats. Plasma F(2)-isoprostane concentration increased in the 2-wk S high Na-fed group. After 3 wk, renal cortical and medullary superoxide production was significantly increased in Dahl S rats on high Na intake, and urinary protein excretion, an index of renal damage, was 273 +/- 32 mg/d in S high Na-fed rats and 35 +/- 4 mg/d in R high Na-fed rats (P < 0.05). In conclusion, salt-sensitive hypertension in the S rat is accompanied by marked decreases in renal medullary SOD and greater renal oxidative stress and renal damage than in R rats.  相似文献   

12.
—Male rats of the Sprague-Dawley strain (80–250 g body wt) were fed either an adequate protein diet (18% lactalbumin) or a protein-deficient diet (0.5% lactalbumin). After 5–8 weeks of receiving the low protein diet, some of the malnourished rats were rehabilitated with an adequate protein diet. The malnourished rats exhibited significant elevations in brain levels of histidine (+415%) and homocarnosine (+100%) in comparison to findings in the control animals of similar age. Associated with the elevated brain levels of histidine in malnutrition was a prominent increase in brain content of histamine (+ 150-+ 238%). The mean brain histamine levels (ng/g) in the control rats varied from 45.96 to 56.15 in several experiments. In the protein-deficient rats, values ranged from 115 to 190. Refeeding the malnourished rats with adequate protein diet elicited reversal of histidine and histamine levels to near normal values within 1 week. The increased brain content of histamine in malnutrition was attributed to enhanced rate of production resulting from increased availability of the precursor amino acid, a conclusion consistent with elevation also of the brain content of homocarnosine (γ-aminobutyryl-l -histidine) which is another major route of disposal of histidine in the brain. The relevance of these neurochemical alterations to the behavioural changes often associated with protein malnutrition, deserves some intensive examination.  相似文献   

13.
Muscle protein synthesis requires energy and amino acids to proceed and can be stimulated by insulin under certain circumstances. We hypothesized that short-term provision of insulin and nutritional energy would stimulate muscle protein synthesis in healthy subjects only if amino acid availability did not decrease. Using stable isotope techniques, we compared the effects on muscle phenylalanine kinetics across the leg of an amino acid-lowering, high-energy (HE, n = 6, 162 +/- 20 kcal/h) hyperglycemic hyperlipidemic hyperinsulinemic clamp with systemic insulin infusion to a low-energy (LE, n = 6, 35 +/- 3 kcal/h, P < 0.05 vs. HE) euglycemic hyperinsulinemic clamp with local insulin infusion in the femoral artery. Basal blood phenylalanine concentrations and phenylalanine net balance, muscle protein breakdown, and synthesis (nmol.min(-1).100 g leg muscle(-1)) were not different between groups. During insulin infusion, femoral insulinemia increased to a similar extent between groups and blood phenylalanine concentration decreased 27 +/- 3% in the HE group but only 9 +/- 2% in the LE group (P < 0.01 HE vs. LE). Phenylalanine net balance increased in both groups, but the change was greater (P < 0.05) in the LE group. Muscle protein breakdown decreased in the HE group (58 +/- 12 to 35 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and did not change in the LE group. Muscle protein synthesis was unchanged in the HE group (39 +/- 6 to 30 +/- 7 nmol.min(-1).100 g leg muscle(-1)) and increased (P < 0.05) in the LE group (41 +/- 9 to 114 +/- 26 nmol.min(-1).100 g leg muscle(-1)). We conclude that amino acid availability is an important factor in the regulation of muscle protein synthesis in response to insulin, as decreased blood amino acid concentrations override the positive effect of insulin on muscle protein synthesis even if excess energy is provided.  相似文献   

14.
The responses of whole body, skeletal muscle, and plasma to oral K loading were studied in K-depleted male rats. Potassium depletion was induced by feeding the rats a K-deficient diet for 4 wk and injecting deoxycorticosterone acetate during the first week. After 4 wk, the rats were growth retarded and hypokalemic (1.9 mmol/l plasma) and had low whole-body and muscle K content, 188 +/- 27 and 276 +/- 19 mmol/kg fat-free dried tissue (FFDT), respectively, compared with 296 +/- 10 and 454 +/- 13 mmol/kg FFDT for the control group. Sodium and water retention also occurred in the K-deficient group. After K depletion, the rats were divided into four groups and received either 0, 1, 2, or 3 intragastric doses of 10 mmol KCl/kg at 8-h intervals. The rats were killed 8 h after the last dose. Control rats were treated similarly. K-depleted and control rats responded differently to K loading. In the normal rats, plasma K remained at 5.0 +/- 0.5 mmol/l, muscle K increased to 502 +/- 24 mmol/kg, and muscle K/N ratio increased from 3.0 to 3.4 mmol/g. In the K-depleted rats, plasma K increased to 7.2 +/- 0.7 mmol/l, muscle K increased to 453 +/- 50 mmol/kg, and muscle K/N ratio increased from 1.8 to 3.1 mmol/g. These data indicate that the capacity of the muscles to accumulate K was impaired after severe K depletion and caused elevated plasma K levels when repletion was complete.  相似文献   

15.
Renal serine production in rats was quantitated by simultaneously measuring renal blood flow and the renal arteriovenous difference for this amino acid. The rate of synthesis was 0.24 +/- 0.02 mumol.min-1.100 g-1 in rats fed a diet containing 12% casein. This rate was not altered by the inclusion of an additional 1% serine in the diet for 7 days or by acute infusion of serine, although both protocols increased blood serine by 50%. When rats were fed a diet in which protein was entirely replaced by crystalline amino acids the rate of renal serine production was also 0.25 +/- 0.05 mumol.min-1.100g-1. Omission of serine or both serine and glycine from this diet did not alter the rate of renal serine synthesis. Renal serine production does not respond to the serine content of the diet.  相似文献   

16.
High-fat and high-sucrose diets increase the contribution of gluconeogenesis to glucose appearance (glc R(a)) under basal conditions. They also reduce insulin suppression of glc R(a) and insulin-stimulated muscle glycogen synthesis under euglycemic, hyperinsulinemic conditions. The purpose of the present study was to determine whether these impairments influence liver and muscle glycogen synthesis under hyperglycemic, hyperinsulinemic conditions. Male rats were fed a high-sucrose, high-fat, or low-fat, starch control diet for either 1 (n = 5-7/group) or 5 wk (n = 5-6/group). Studies involved two 90-min periods. During the first, a basal period (BP), [6-3H]glucose was infused. In the second, a hyperglycemic period (HP), [6-3H]glucose, [6-14C]glucose, and unlabeled glucose were infused. Plasma glucose (BP: 111.2 +/- 1.5 mg/dl; HP: 172.3 +/- 1.5 mg/dl), insulin (BP: 2.5 +/- 0.2 ng/ml; HP: 4.9 +/- 0.3 ng/ml), and glucagon (BP: 81.8 +/- 1.6 ng/l; HP: 74.0 +/- 1.3 ng/l) concentrations were not significantly different among diet groups or with respect to time on diet. There were no significant differences among groups in the glucose infusion rate (mg x kg(-1) x min(-1)) necessary to maintain arterial glucose concentrations at approximately 170 mg/dl (pooled average: 6.4 +/- 0.8 at 1 wk; 6.4 +/- 0.7 at 5 wk), percent suppression of glc R(a) (44.4 +/- 7.8% at 1 wk; 63.2 +/- 4.3% at 5 wk), tracer-estimated net liver glycogen synthesis (7.8 +/- 1.3 microg x g liver(-1) x min(-1) at 1 wk; 10.5 +/- 2.2 microg x g liver(-1) x min(-1) at 5 wk), indirect pathway glycogen synthesis (3.7 +/- 0.9 microg x g liver(-1) x min(-1) at 1 wk; 3.4 +/- 0.9 microg x g liver(-1) x min(-1) at 5 wk), or tracer-estimated net muscle glycogenesis (1.0 +/- 0.3 microg x g muscle(-1) x min(-1) at 1 wk; 1.6 +/- 0.3 microg x g muscle(-1) x min(-1) at 5 wk). These data suggest that hyperglycemia compensates for diet-induced insulin resistance in both liver and skeletal muscle.  相似文献   

17.
Eighty-seven male Sprague-Dawley rats (245-300 g) were randomly assigned to one of two experimental groups. The first group consumed a diet high in fat and low in carbohydrate (LCD), whereas the second group ate a normal diet (ND). After either 1 or 5 wk on the diets, rats from each group were killed either before or after an exhausting run on a rodent treadmill (35 m X min-1, 0% grade). The LCD animals ran significantly longer before exhaustion at both week 1 (44.9 +/- 5.1 vs. 41.6 +/- 4.2 min) and week 5 (47.1 +/- 3.6 vs. 35.5 +/- 3.1 min) (P less than 0.05). Adaptations to the LCD included lower muscle and liver glycogen content, decreased rate of glycogen breakdown during exercise, decreased lactate production, and elevated blood ketone levels. In addition to these substrate changes, the LCD caused increased enzyme activities of muscular 3-hydroxyacyl-CoA dehydrogenase (35-110%) and citrate synthase (15-20%). These data indicate that rats exposed to a high-fat diet are capable of prolonged intense exercise in spite of limited glycogen stores. This improved capacity for exercise appears to be partially the result of muscular adaptations to the diet, which apparently increase the ability to oxidize fat and concomitantly spare glycogen.  相似文献   

18.
We have previously demonstrated that dietary protein induced pancreatic hypergrowth in pancreaticobiliary diverted (PBD) rats. Dietary protein and dietary amino acids stimulate protein synthesis by regulating translation initiation in the rat skeletal muscle and liver. The aim of the present study was to determine whether feeding a high-protein diet induces activation of translation initiation for protein synthesis in the rat pancreas. In PBD rats in which the bile-pancreatic juice was surgically diverted to the upper ileum for 11-13 days, pancreatic dry weight and protein content were doubled compared with those in sham rats and further increased with feeding of a high-protein diet (60% casein diet) for 2 days. These pancreatic growth parameters were maintained at high levels for the next 5 days and were much higher than those of sham rats fed a high-protein diet. In both sham and PBD rats, feeding of a high-protein diet for 2 days induced phosphorylation of eukaryotic initiation factor 4E-binding protein 1 and 70-kDa ribosomal protein S6 kinase, indicating the activation of the initiation phase of translation for pancreatic protein synthesis. However, this increased phosphorylation returned to normal levels on Day 7 in PBD but not in sham rats. We concluded that feeding a high-protein diet induced pancreatic growth with increases in the translation initiation activities for pancreatic protein synthesis within 2 days and that prolonged feeding of a high-protein diet changed the initiation activities differently in sham and PBD rats.  相似文献   

19.
Leucine (LEU) is recognized as a major regulator of muscle protein synthesis (MPS). Citrulline (CIT) is emerging as a potent new regulator. The aim of our study was to compare MPS modulation by CIT and LEU in food-deprived rats and to determine whether their action was driven by similar mechanisms. Rats were either freely fed (F, n?=?10) or food deprived for 18?h. Food-deprived rats were randomly assigned to one of four groups and received per os, i.e., gavage, saline (S, n?=?10), L: -leucine (1.35?g/kg, LEU, n?=?10), L: -citrulline (1.80?g/kg CIT, n?=?10) or isonitrogenous non-essential amino acids (NEAA, n?=?10). After gavage, the rats were injected with a flooding dose of [(13)C] valine to determine MPS. The rats were killed 50?min after the injection of the flooding dose. Blood was collected for amino acid, glucose and insulin determinations. Tibialis anterior muscles were excised for determination of MPS and for Western blot analyses of the PI3K/Akt, mTORC1, ERK1/2/MAPK pathways and AMP kinase component. MPS was depressed by 61% in starved rats (Saline vs. Fed, P??CIT). LEU but not CIT increased the phosphorylation of rpS6 at serine 235/236. Our findings clearly demonstrated that both CIT and LEU were able to stimulate MPS, but this effect was likely related to the nitrogen load. LEU, CIT and NEAA may have different actions on MPS in this model as they share different mTORC1 regulation capacities.  相似文献   

20.
The aim of this study was to elucidate the effects of long-term intake of leucine in dietary protein malnutrition on muscle protein synthesis and degradation. A reduction in muscle mass was suppressed by leucine-supplementation (1.5% leucine) in rats fed protein-free diet for 7 days. Furthermore, the rate of muscle protein degradation was decreased without an increase in muscle protein synthesis. In addition, to elucidate the mechanism involved in the suppressive effect of leucine, we measured the activities of degradation systems in muscle. Proteinase activity (calpain and proteasome) and ubiquitin ligase mRNA (Atrogin-1 and MuRF1) expression were not suppressed in animals fed a leucine-supplemented diet, whereas the autophagy marker, protein light chain 3 active form (LC3-II), expression was significantly decreased. These results suggest that the protein-free diet supplemented with leucine suppresses muscle protein degradation through inhibition of autophagy rather than protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号