首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piper betle L., a dioecious shade-loving perennial climber is one of the important Pan-Asiatic plants. More than hundred landraces having marked variation in leaf chlorophyll (Chl) content are in cultivation in India. In this study, role of chlorophyllase (Chlase) in Chl homeostasis and post-harvest breakdown was investigated in two contrasting P. betle landraces Kapoori Vellaikodi (KV) with light green and Khasi Shillong (KS) with dark green leaves. The two landraces showed negative correlation between Chl content and Chlase activity in fresh as well as stored leaves. Accumulation of chlorophyllide a (Chlid a) was correlated with the level of Chlase activity, which was higher in KV than KS. The overall response of abscisic acid (ABA) and benzylaminopurine (BAP) was similar in KV and KS, however, the time-course was different. ABA-induced Chl loss was accompanied by rise in Chlase activity in KV and KS and the delay in Chl loss by BAP was accompanied by reduction in Chlase activity. While there were significant differences in Chlase activity in KV and KS, only minor differences were observed in the enzyme properties like pH and temperature optima, Km and Vmax. No landrace-related differences were observed on the effect of metal ions and functional group reagents/amino acid effectors on Chlase activity. These results showed that despite significant differences in Chl content and Chlase activity between landraces KV and KS, the properties of Chlase were similar. The findings show that in P. betle Chlase is involved in Chl homeostasis and also in Chl degradation during post-harvest storage and responds to hormonal regulations. These findings might be useful in predicting the stability of Chl during post-harvest storage and also the shelf-life in other P. betle landraces.  相似文献   

2.
The relationship between the activity of xanthophyll cycle and chlorophyll (Chl) metabolism was investigated using two cultivars, Helan No. 3 (seawater-tolerant cultivar) and Yuanye (seawater-sensitive cultivar), of spinach (Spinacia oleracea L.) plants cultured in Hoagland’s nutrient solution, with or without seawater (40%). The results showed that, in plants of two cultivars with seawater, the xanthophyll cycle seems to show a principal protection mechanism against photoinhibition under seawater stress. Furthermore, accumulation of reactive oxygen species (ROS) in chloroplasts of two cultivars was enhanced by seawater to lower the activity of porphobilinogen deaminase. Namely, the conversion of porphobilinogen into uroporphyrinogen III involved in Chl biosynthetic processes was inhibited by seawater. In Helan No. 3 spinach plants with seawater, higher activity of xanthophyll cycle in the leaves dissipated more excess light energy, which appeared to lower the levels of ROS in chloroplasts. As a consequence, the Chl biosynthesis in Helan No. 3 leaves with seawater showed only a weak inhibition and the activity of chlorophyllase (Chlase) was not affected by seawater stress. In contrast, a more pronounced accumulation of ROS in chloroplasts of Yuanye leaves, which possess lower xanthophyll cycle activity, severely inhibited Chl biosynthesis and remarkably enhanced the activity of Chlase, which aggravates the decomposition of Chl. These results suggest that higher activity of xanthophyll cycle in seawater-tolerant spinach plays a role in maintaining Chl metabolic processes, probably by decreasing the levels of ROS, when the plants are cultured in the nutrient solution with seawater (40%).  相似文献   

3.
Autumnal tints are one of the most manifest and fascinating natural phenomena, but the mechanism of chlorophyll (Chl)-breakdown in deciduous trees has not been fully elucidated. In this study, we analyzed the composition of Chl-related compounds and determined the activities of initial Chl-degrading enzymes in Ginkgo leaves at various stages in the process of autumnal coloring. Only pheophytin a (Pheo a, Mg-free Chl a) was detected in yellow leaves by HPLC analysis, and the activity of Mg-dechelatase in yellow leaves was found to be higher than in green leaves. These findings showed that the removal of magnesium from Chl a occurred in advance of dephytylation in the Ginkgo.  相似文献   

4.
The senescence-induced staygreen protein regulates chlorophyll degradation   总被引:15,自引:1,他引:14  
Park SY  Yu JW  Park JS  Li J  Yoo SC  Lee NY  Lee SK  Jeong SW  Seo HS  Koh HJ  Jeon JS  Park YI  Paek NC 《The Plant cell》2007,19(5):1649-1664
  相似文献   

5.
Autumnal tints are one of the most fascinating natural phenomena, but the molecular mechanism of chlorophyll (Chl-)degradation in deciduous trees has not been fully understood. In this study, from the leaves of Ginkgo biloba, chlorophyllase-homologous GbCLH was cloned by RT-PCR with degenerated primers. The expression of GbCLH in different yellowing stages was analyzed by Northern hybridization. The expression level of GbCLH was highest in green leaves and significantly declined during the process of leaf yellowing. These results suggested that GbCLH should be involved in chlorophyll-homeostasis in Ginkgo biloba.  相似文献   

6.
7.
8.
Chlorophyll (Chl)-containing light-harvesting complexes (LHCs) in chloroplasts of plant and algal cells usually include an oxidized Chl (Chl b or c) in addition to Chl a. Oxidation of peripheral groups on the tetrapyrrole structure increases the Lewis acid strength of the central Mg atom. We propose that the resulting stronger coordination bonds between oxidized Chls and ligands in LHC apoproteins (LHCPs) stabilize the initial intermediates and thus promote assembly of LHCs within the chloroplast envelope.  相似文献   

9.
Choudhury  N.K.  Behera  R.K. 《Photosynthetica》2001,39(4):481-488
Exposure of plants to irradiation, in excess to saturate photosynthesis, leads to reduction in photosynthetic capacity without any change in bulk pigment content. This effect is known as photoinhibition. Photoinhibition is followed by destruction of carotenoids (Cars), bleaching of chlorophylls (Chls), and increased lipid peroxidation due to formation of reactive oxygen species if the excess irradiance exposure continues. Photoinhibition of photosystem 2 (PS2) in vivo is often a photoprotective strategy rather than a damaging process. For sustainable maintenance of chloroplast function under high irradiance, the plants develop various photoprotective strategies. Cars perform essential photoprotective roles in chloroplasts by quenching the triplet Chl and scavenging singlet oxygen and other reactive oxygen species. Recently photoprotective role of xanthophylls (zeaxanthin) for dissipation of excess excitation energy under irradiance stress has been emphasised. The inter-conversion of violaxanthin (Vx) into zeaxanthin (Zx) in the light-harvesting complexes (LHC) serves to regulate photon harvesting and subsequent energy dissipation. De-epoxidation of Vx to Zx leads to changes in structure and properties of these xanthophylls which brings about significant structural changes in the LHC complex. This ultimately results in (1) direct quenching of Chl fluorescence by singlet-singlet energy transfer from Chl to Zx, (2) trans-thylakoid membrane mediated, pH-dependent indirect quenching of Chl fluorescence. Apart from these, other processes such as early light-inducible proteins, D1 turnover, and several enzymatic defence mechanisms, operate in the chloroplasts, either for tolerance or to neutralise the harmful effect of high irradiance.  相似文献   

10.
The regularities of the individual and mixed association of chlorophylls (Chl a, PChl a) with pheophytin (Pheo) were investigated. The complex studies of optical activity, spectral--luminescent and energetic characteristics of aggregates were carried out in mixture of solvents aceton-water (1:49). The formation of pigment mixed associates leads to intracomplex energy transfer from Chl (or PChl) to Pheo. It is shown that the efficiencies of such process, determined by independent ways via the luminescence quenching of energy donor or the emission sensibilization of acceptor, are identical. The energy migration mechanism is the inductive resonance one in studied complexes. The main patterns of the electronic excitation energy deactivation in such systems are discussed. The obtained results are analysed taking into account the contemporary background of the role of pheophytin in the primary processes of photosynthesis.  相似文献   

11.
This study reveals by in vivo deuterium labeling that in higher plants chlorophyll (Chl) b is converted to Chl a before degradation. For this purpose, de-greening of excised green primary leaves of barley (Hordeum vulgare) was induced by permanent darkness in the presence of heavy water (80 atom % (2)H). The resulting Chl a catabolite in the plant extract was subjected to chemical degradation by chromic acid. 3-(2-Hydroxyethyl)-4-methyl-maleimide, the key fragment that originates from the Chl catabolite, was isolated. High resolution (1)H-, (2)H-NMR and mass spectroscopy unequivocally demonstrates that a fraction of this maleimide fragment consists of a mono-deuterated methyl group. These results suggest that Chl b is converted into Chl a before degradation. Quantification proves that the initial ratio of Chl a:Chl b in the green plant is preserved to about 60-70% in the catabolite composition isolated from yellowing leaves. The incorporation of only one deuterium atom indicates the involvement of two distinguishable redox enzymes during the conversion.  相似文献   

12.
The energy transfer processes between Chls b and Chls a have been studied in the minor antenna complex CP29 by femtosecond transient absorption spectroscopy. Two samples were analyzed: the native CP29, purified from higher plants, and the recombinant one, reconstituted in vitro with the full pigment complement. The measurements indicate that the transfer kinetics in the two samples are virtually identical, confirming that the reconstituted CP29 has the same spectroscopic properties as the native one. In particular, three lifetimes (150 fs, 1.2 ps, and 5-6 ps) were identified for Chl b-652 nm to Chl a energy transfer and at least one for Chl b-640 nm (600-800 fs). Considering that the complexes bind two Chls b per polypeptide, the observation of more than two lifetimes for the Chl b to Chl a energy transfer, in both samples, clearly indicates the presence of the so-called mixed Chl binding sites--sites which are not selective for Chl a or Chl b, but can accommodate either species. The kinetic components and spectra are assigned to specific Chl binding sites in the complex, which provides further information on the structural organization.  相似文献   

13.
Gender based differences in response to low temperature stress in leaf chlorophyll (Chl), and carotenoids (Car) contents and chlorophyllase (Chlase) activity were monitored in male (Kapoori Vellaikodi and Madras Pan Kapoori) and female (Bangla Mahoba, Desi Bangla and Kaker) betel vine landraces. Although female plants contained nearly two fold more Chl than male counterparts, the low temperature induced Chl loss was comparable, however, male plants showed higher Chl a/b ratio than females. Chlase activity increased due to cold stress in all the landraces. Male plants always showed higher activities of Chlase, which may be one of the reasons for the rather low Chl contents in male plants.  相似文献   

14.
The content of chlorophylls (Chls) and carotenoids was studied in the leaves of 42 species of boreal aquatic plants with different degree of submergence (emergent, floating, and submerged) and isopalisade, dorsoventral, and homogenous types of mesophyll structure. Hydrophytes were shown to have a low Chl content (1–2 mg/g fr wt) and low Chls/carotenoids ratio (2.3–3.5) as compared to terrestrial plants. The pigment content per dry wt unit and unit leaf area was dependent on the type of mesophyll structure. It was a consequence of the changes in the parameters of leaf mesophyll structure characterizing the density of photosynthetic elements. In a sequence emergent floating submerged forms, the content of Chls and carotenoids decreased, and the photosynthetic capacity decreased due to a reduction in the chloroplast number per unit leaf area. Adaptation of submerged leaves to low illumination and slow CO2 diffusion changed the functional properties of chloroplasts. An increase in the pigment content in the chloroplasts of submerged leaves (7 × 10–9 mg Chl, 2 × 10–9 mg carotenoids) as compared to emergent and floating leaves was accompanied by a decline in the photosynthetic capacity per Chl comprising 1.6 mg CO2/(mg Chl h) versus 3.9 and 3.8 mg CO2/(mg Chl h) in emergent and floating leaves, respectively.  相似文献   

15.
16.
Stepwise two-photon excited fluorescence (TPEF) spectra of the photosynthetic antenna complexes PCP, CP47, CP29, and light-harvesting complex II (LHC II) were measured. TPEF emitted from higher excited states of chlorophyll (Chl) a and b was elicited via consecutive absorption of two photons in the Chl a/b Qy range induced by tunable 100-fs laser pulses. Global analyses of the TPEF line shapes with a model function for monomeric Chl a in a proteinaceous environment allow distinction between contributions from monomeric Chls a and b, strongly excitonically coupled Chls a, and Chl a/b heterodimers/-oligomers. The analyses indicate that the longest wavelength-absorbing Chl species in the Qy region of LHC II is a Chl a homodimer with additional contributions from adjacent Chl b. Likewise, in CP47 a spectral form at approximately 680 nm (that is, however, not the red-most species) is also due to strongly coupled Chls a. In contrast to LHC II, the red-most Chl subband of CP29 is due to a monomeric Chl a. The two Chls b in CP29 exhibit marked differences: a Chl b absorbing at approximately 650 nm is not excitonically coupled to other Chls. Based on this finding, the refractive index of its microenvironment can be determined to be 1.48. The second Chl b in CP29 (absorbing at approximately 640 nm) is strongly coupled to Chl a. Implications of the findings with respect to excitation energy transfer pathways and rates are discussed. Moreover, the results will be related to most recent structural analyses.  相似文献   

17.
The trimeric main light-harvesting complex (LHC-II) is the only antenna complex of higher plants of which a high-resolution 3D structure has been obtained (Kühlbrandt, W., Wang, D., and Fujiyoshi, Y. (1994) Nature 367, 614-621) and which can be refolded in vitro from its components. Four different recombinant forms of LHC-II, each with a specific chlorophyll (Chl) binding site removed by site-directed mutagenesis, were refolded from heterologously overexpressed apoprotein, purified pigments, and lipid. Absorption spectra of mutant LHC-II were measured in the temperature range from 4 to 300 K and compared to likewise refolded wild-type complex and to native LHC-II isolated from pea chloroplasts. Chls at different binding sites have characteristic, well-defined absorption sub-bands. Mixed occupation of binding sites with Chls a and b is not observed. Temperature-dependent changes of the mutant absorption spectra reveal a consistent shift of the major difference bands but an irregular behavior of minor bands. A model of the spectral substructure of LHC-II is proposed which accounts for the different absorption properties of the 12 individual Chls in the complex, thus establishing a first consistent correlation between the 3D structure of LHC-II and its spectral properties. The spectral substructure is valid for recombinant and native LHC-II, indicating that both have the same spatial arrangement of Chls and that the refolded complex is fully functional.  相似文献   

18.
The subcellular distribution and activity of glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) were studied in developing peach (Prunus persica L. Batsch cv. Zaoyu) fruit. Fruit tissues were separated by differential centrifugation at 15,000g into plastidic and cytosolic fractions. There was no serious loss of enzyme activity (or activation) during the preparation of fractions. G6PDH activity was found in both the plastidic and cytosolic compartments. Moreover, DTT had no effect on the plastidic G6PDH activities, that is, the redox regulatory mechanism did not play an important role in the peach fleshy tissue. Results from the immunogold electron-microscope localization revealed that G6PDH isoenzymes were mainly present in the cytosol, the secondary wall and plastids (chloroplasts and chromoplasts), but scarcely found in the starch granules or the cell wall. In addition to a decrease in fruit firmness, the G6PDH activity in the cytotolic and plastidic fractions increased, and anthocyanin started to accumulate during fruit maturation. These results suggest that G6PDH, by providing precursors for metabolic processes, might be associated with the red coloration that occurs in peach fruit.  相似文献   

19.
M A Schneegurt  S I Beale 《Biochemistry》1992,31(47):11677-11683
Chlorophyll (Chl) b is an accessory light-harvesting pigment of plants and chlorophyte algae. Chl b differs from Chl a in that the 3-methyl group on ring B of chl a is replaced by a 3-formyl group on Chl b. The present study determined the biosynthetic origin of the Chl b formyl oxygen in in vivo labeling experiments. A mutant strain of the unicellular chlorophyte Chlorella vulgaris, which can not synthesize Chls when cultured in the dark but rapidly greens when transferred to the light, was grown in the dark for several generations to deplete Chls, and then the cells were transferred to the light and allowed to form Chls in a controlled atmosphere containing 18O2. Chl a and Chl b were purified from the cells and analyzed by high-resolution mass spectroscopy. Analysis of the mass spectra indicated that over 76% of the Chl a molecules had incorporated an atom of 18O. For Chl b, 58% of the molecules had incorporated an atom of 18O at one position and 34% of the molecules had incorporated an atom of 18O at a second position. These results demonstrate that the isocyclic ring keto oxygen of both Chl a and Chl b, as well as the formyl oxygen of Chl b, is derived from O2.  相似文献   

20.
Chlorophyll (Chl) biosynthesis and degradation are the only biochemical processes on Earth that can be directly observed from satellites or other planets. The bulk of the Chls is found in the light-harvesting antenna complexes of photosynthetic organisms. Surprisingly little is known about the biosynthesis of Chl b, which is the second most abundant Chl pigment after Chl a. We describe here the expression and properties of the chlorophyllide a oxygenase gene (CAO) from Arabidopsis thaliana, which is apparently the key enzyme in Chl b biosynthesis. The recombinant enzyme produced in Escherichia coli catalyses an unusual two-step oxygenase reaction that is the 'missing link' in the chlorophyll cycle of higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号