首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reach of artificial light at night (ALAN) is growing rapidly around the globe, including the increasing use of energy‐efficient LED lights. Many studies document the physiological costs of light at night, but far fewer have focused on the potential benefits for nocturnal insectivores and the likely ecological consequences of shifts in predator–prey relationships. We investigated the effects of ALAN on the foraging behaviour and prey capture success in juvenile Australian garden orb‐web spiders (Eriophora biapicata). Laboratory experiments demonstrated that juvenile spiders were attracted to LED lights when choosing foraging sites, but prey availability was a stronger cue for remaining in a foraging site. Field experiments revealed a significant increase in prey capture rates for webs placed near LED lights. This suggests that any physiological costs of light at night may be offset by the foraging benefits, perhaps partially explaining recently observed increases in the size, fecundity and abundance of some orb‐web spider species in urban environments. Our results highlight the potential long‐term consequences of night lighting in urban ecosystems, through the impact of orb‐web spiders on insect populations.  相似文献   

2.
Structural features of habitat are known to affect the density of predators and prey, and it is generally accepted that complexity provides some protection from the environment and predators but may also reduce foraging success. A next step in understanding these interactions is to decouple the impacts of both spatial and trophic ingredients of complexity to explicitly explore the trade-offs between the habitat, its effects on foraging success, and the competition that ensues as predator densities increase. We quantified the accumulation of spiders and their prey in habitat islands with different habitat complexities created in the field using natural plants, plant debris and plastic plant mimics. Spiders were observed at higher densities in the complex habitat structure composed of both live plants and thatch. However, the numerically dominant predator in the system, the wolf spider Pardosa milvina, was observed at high densities in habitat islands containing plastic mimics of plants and thatch. In a laboratory experiment, we examined the interactive effects of conspecific density and habitat on the prey capture of P. milvina. Thatch, with or without vertical plant structure, reduced prey capture, but the plastic fiber did not. Pairwise interactions among spiders reduced prey capture, but this effect was moderated by thatch. Taken together, these experiments highlight the flexibility of one important predator in the food web, where multiple environmental cues intersect to explain the role of habitat complexity in determining generalist predator accumulation.  相似文献   

3.
Stegodyphus lineatus (Eresidae) is a desert spider that buildsan aerial capture web on bushes in the Negev desert in southernIsrael. Web building for spiders is costly in energy, time,and risk of predation. Spiders should trade-off these costswith the benefits in terms of prey capture. We tested the hypothesisthat the previous foraging success of the spider influencesthe effort invested in foraging. Specifically, we asked whetheran increase in food intake causes spiders to reduce web renewalactivity and web size. Alternatively, time constraints on foragingand development, resulting from a short growing season, couldinduce spiders to continue foraging even when supplemented withprey. The cost of web building was measured as time and massloss. To build an average size web (about 150 cm2), we calculatedthat a spider requires 6 h and that spiders lose 3%-7% of their weight.In field experiments, spiders responded differently to food supplementationin 2 different years. In 1994, they improved their condition comparedto individuals whose webs were removed to reduce foraging opportunitiesand compared to control spiders. In 1995, spiders tested earlier inthe season than the previous year did not improve their conditionin response to prey supplementation. Nonetheless, in both years, food-supplementedspiders built significantly smaller webs than food-deprived andcontrol spiders. This result was confirmed in a laboratory experiment whereprey intake was controlled. We conclude that for S. lineatus immediateforaging risks outweigh the potential time constraints on foraging.  相似文献   

4.
Models predicting mechanisms driving sexual cannibalism in spiders with sexual size dimorphism (SSD) often assume that spiders use post‐copulatory food to channel nutrients into eggs and fecundity is altered through changes in clutch size or egg mass. I tested these assumptions using an orb web spider with extreme SSD, Argiope keyserlingi. I fed mated female spiders prey of either high protein‐low energy or low protein‐high energy composition. I measured egg energy density; a measure of the relative volumes of yolk and albumen. I predicted that if A. keyserlingi increase their egg energy density upon feeding on prey of a specific nutrient composition, they could enhance their fecundity by investing in more energy dense eggs. However, if the egg energy densities are dissimilar to their post‐copulatory prey they must be drawing energy from their somatic reserves to invest in eggs. In a further experiment I allowed female spiders to mate with and cannibalize males to determine if cannibalism induces similar effects on egg energy density. Male spider protein energy ratio was measured and found to resemble the high protein‐low energy prey. I found disagreement between the composition of post‐copulatory food and eggs in both experiments. Additionally, spiders fed high protein‐low energy prey lost weight indicating that they draw on their energy reserves to invest in eggs. I thus concluded that spiders that feed on high protein‐low energy prey or on males increase their egg energy density and, possibly, fecundity. However, the nutrient content of the prey or males cannot provide for investment in eggs. The energy invested in eggs is drawn from somatic reserves, probably induced by an as yet undescribed physiological trigger.  相似文献   

5.
  1. Plant–animal interactions are diverse and widespread shaping ecology, evolution, and biodiversity of most ecological communities. Carnivorous plants are unusual in that they can be simultaneously engaged with animals in multiple mutualistic and antagonistic interactions including reversed plant–animal interactions where they are the predator. Competition with animals is a potential antagonistic plant–animal interaction unique to carnivorous plants when they and animal predators consume the same prey.
  2. The goal of this field study was to test the hypothesis that under natural conditions, sundews and spiders are predators consuming the same prey thus creating an environment where interkingdom competition can occur.
  3. Over 12 months, we collected data on 15 dates in the only protected Highland Rim Wet Meadow Ecosystem in Kentucky where sundews, sheet‐web spiders, and ground‐running spiders co‐exist. One each sampling day, we attempted to locate fifteen sites with: (a) both sheet‐web spiders and sundews; (b) sundews only; and (c) where neither occurred. Sticky traps were set at each of these sites to determine prey (springtails) activity–density. Ground‐running spiders were collected on sampling days. DNA extraction was performed on all spiders to determine which individuals had eaten springtails and comparing this to the density of sundews where the spiders were captured.
  4. Sundews and spiders consumed springtails. Springtail activity–densities were lower, the higher the density of sundews. Both sheet‐web and ground‐running spiders were found less often where sundew densities were high. Sheet‐web size was smaller where sundew densities were high.
  5. The results of this study suggest that asymmetrical exploitative competition occurs between sundews and spiders. Sundews appear to have a greater negative impact on spiders, where spiders probably have little impact on sundews. In this example of interkingdom competition where the asymmetry should be most extreme, amensalism where one competitor experiences no cost of interaction may be occurring.
  相似文献   

6.
Generalist predators are capable of selective foraging, but are predicted to feed in close proportion to prey availability to maximize energetic intake especially when overall prey availability is low. By extension, they are also expected to feed in a more frequency‐dependent manner during winter compared to the more favourable foraging conditions during spring, summer and fall seasons. For 18 months, we observed the foraging patterns of forest‐dwelling wolf spiders from the genus Schizocosa (Araneae: Lycosidae) using PCR‐based gut‐content analysis and simultaneously monitored the activity densities of two common prey: springtails (Collembola) and flies (Diptera). Rates of prey detection within spider guts relative to rates of prey collected in traps were estimated using Roualdes’ cst model and compared using various linear contrasts to make inferences pertaining to seasonal prey selectivity. Results indicated spiders foraged selectively over the course of the study, contrary to predictions derived from optimal foraging theory. Even during winter, with overall low prey densities, the relative rates of predation compared to available prey differed significantly over time and by prey group. Moreover, these spiders appeared to diversify their diets; the least abundant prey group was consistently overrepresented in the diet within a given season. We suggest that foraging in generalist predators is not necessarily restricted to frequency dependency during winter. In fact, foraging motives other than energy maximization, such as a more nutrient‐focused strategy, may also be optimal for generalist predators during prey‐scarce winters.  相似文献   

7.
The purpose of this study is to test whether the integration of past and present foraging experience in web relocation decision enhances foraging efficiency of the spider Cyclosa argenteoalba in its natural environment. We measured daily changes in the prey availability at several fixed sites in a natural environment and constructed a model environment based on these observational data. In the model environment, we simulated the behavior of spiders that foraged and relocated their webs according to several decision rules, which differed in terms of how a spider used its past experience. Results of the simulation revealed that the less past experience is discounted in making web relocation decisions, the more prey the spider is expected to capture. The expected number of web relocations decreased as spiders kept past foraging experience longer. These results suggest that C. argenteoalba enhances foraging efficiency by using past foraging experience for long times in the decision of web relocation in its natural environment.  相似文献   

8.
Abstract The foraging behaviour, web characteristics and prey availability of two sympatric orb-weaving spiders, Nephila plumipes and Eriophora transmarina (Araneae: Araneoidea), are compared. The spiders are similarly sized but have different temporal foraging patterns. Nephila plumipes spins a relatively permanent web and captures most of its prey during the day. Eriophora transmarina only forages at night, spinning a new web every night and usually dismantling it at dawn. These different foraging activities are most likely to be responsible for the observed differences in the types and rates of prey capture: E. transmarina captured mostly Lepidoptera that were more abundant at night than during the day, while N. plumipes captured mostly Hymenoptera that were more abundant during the day than at night. While nocturnal E. transmarina have less time available for foraging than the diurnal N. plumipes, the former has a substantially higher nocturnal prey capture rate. We argue that the difference between the species in their prey capture rates are likely to be due to differences in the architecture of their webs.  相似文献   

9.
Y. Lubin  J. Henschel 《Oecologia》1996,105(1):64-73
We tested the alternative hypotheses that foraging effort will increase (energy maximizer model) or decrease (due to increased costs or risks) when food supply increased, using a Namib desert burrowing spider, Seothyra henscheli (Eresidae), which feeds mainly on ants. The web of S. henscheli has a simple geometrical configuration, comprising a horizontal mat on the sand surface, with a variable number of lobes lined with sticky silk. The sticky silk is renewed daily after being covered by wind-blown sand. In a field experiment, we supplemented the spiders' natural prey with one ant on each day that spiders had active webs and determined the response to an increase in prey. We compared the foraging activity and web geometry of prey-supplemented spiders to non-supplemented controls. We compared the same parameters in fooddeprived and supplemented spiders in captivity. The results support the costs of foraging hypothesis. Supplemented spiders reduced their foraging activity and web dimensions. They moulted at least once and grew rapidly, more than doubling their mass in 6 weeks. By contrast, food-deprived spiders increased foraging effort by enlarging the diameter of the capture web. We suggest that digestive constraints prevented supplemented spiders from fully utilizing the available prey. By reducing foraging activities on the surface, spiders in a prey-rich habitat can reduce the risk of predation. However, early maturation resulting from a higher growth rate provides no advantage to S. henscheli owing to the fact that the timing of mating and dispersal are fixed by climatic factors (wind and temperature). Instead, large female body size will increase fitness by increasing the investiment in young during the period of extended maternal care.  相似文献   

10.
1. The distribution of the large orb‐weaving spider Argiope trifasciata in old field habitats of North America and the habitat selection process this species used was studied for 2 years. 2. Because web spiders have limited dispersal abilities and an energetically costly prey capture device, they do not have the ability to sample potential foraging sites. Structural complexity of the vegetation to which the web must be attached is relatively easy to assess. The hypothesis that the structural complexity is a primary factor in determining initial web site selection was tested both by relating the natural distribution of the spiders across habitats to vegetational complexity and by manipulating the complexity of the habitats in a series of experiments. 3. Argiope trifasciata was not distributed evenly among three old field vegetation types. Habitat complexity was related to spider density in both years although no measure of insect activity, prey capture, or prey consumption was correlated with spider distribution. 4. Three experimental manipulations were conducted to test the impact of habitat structure on spider establishment: (1) the amount of natural vegetation was reduced, (2) structures were added to a simple habitat, and (3) the complexity of the structures added was varied. In each case, spiders were introduced and establishment of webs was monitored. In all manipulations, spider establishment was related to the complexity of the substrate available. 5. These results are important for understanding the cues that influence foraging site selection and therefore provide insight into the distribution of species with limited dispersal abilities and high site investment requirements.  相似文献   

11.
Predators may utilize signals to exploit the sensory biases of their prey or their predators. The inclusion of conspicuous silk structures called decorations or stabilimenta in the webs of some orb‐web spiders (Araneae: Araneidae, Tetragnathidae, Uloboridae) appears to be an example of a sensory exploitation system. The function of these structures is controversial but they may signal to attract prey and/or deter predators. Here, we test these predictions, using a combination of field manipulations and laboratory experiments. In the field, decorations influenced the foraging success of adult female St. Andrew’s Cross spiders, Argiope keyserlingi: inclusion of decorations increased prey capture rates as the available prey also increased. In contrast, when decorations were removed, prey capture rates were low and unrelated to the amount of available prey. Laboratory choice experiments showed that significantly more flies (Chrysomya varipes; Diptera: Calliphoridae) were attracted to decorated webs. However, decorations also attracted predators (adult and juvenile praying mantids, Archimantis latistylus; Mantodea: Mantidae) to the web. St. Andrew’s Cross spiders apparently resolve the conflicting nature of a prey‐ and predator‐attracting signal by varying their decorating behaviour according to the risk of predation: spiders spun fewer decorations if their webs were located in dense vegetation where predators had greater access, than if the webs were located in sparse vegetation.  相似文献   

12.
Vibrational signalling is a widespread form of animal communication and, in the form of sexual communication, has been generally regarded as inherently short‐range and a private communication channel, free from eavesdropping by generalist predators. A combination of fieldwork and laboratory experiments was used to test the hypothesis that predators can intercept and exploit such signals. First, we developed and characterized PCR primers specific for leafhoppers of the genus Aphrodes and specifically for the species Aphrodes makarovi. Spiders were collected from sites where leafhoppers were present and screened with these primers to establish which spider species were significant predators of this species during the mating period of these leafhoppers. Analysis using PCR of the gut contents of tangle‐web spiders, Enoplognatha ovata (Theridiidae), showed that they consume leafhoppers in the field at a greater rate when signalling adults were present than when nymphs were dominant, suggesting that the spiders were using these vibrations signals to find their prey. Playback and microcosm experiments then showed that E. ovata can use the vibrational signals of male leafhoppers as a cue during foraging and, as a result, killed significantly more male than female A. makarovi. Our results show, for the first time, that arthropod predators can exploit prey vibrational communication to obtain information about prey availability and use this information to locate and capture prey. This may be a widespread mechanism for prey location, one that is likely to be a major unrecognized driver of evolution in both predators and prey.  相似文献   

13.
Abstract Orb web spiders face a dilemma: forage in open habitats and risk predation or forage in closed habitats to minimize risk but at reduced foraging profitability. We tested whether Argiope keyserlingi opts for safer habitats at the expense of foraging success by (i) determining habitat selection indices in open and closed habitats; (ii) marking and releasing individual juvenile, subadult and adults over two 4‐week periods to determine if life‐history stage influences habitat selection; and (iii) determining the biotic and abiotic environmental parameters that relate to A. keyserlingi abundance. We found that A. keyserlingi selected closed habitats. Sedge and anthropogenic structures were selected and trees were avoided. Juveniles were never found in open habitats, most likely because of high postdispersal mortality. Subadults and adults may shift from closed to open habitats while juveniles never shifted habitat. Foliage density, plant height, potential prey abundance, and mantid and bird abundance were correlated with A. keyserlingi abundance, with only bird abundance explaining habitat selection. We measured web capture area, spiral distance (distance between spiral threads) and the number of decoration arms (0, 1, 2, 3 or 4) in the field and did laboratory experiments to test the influence of (i) space and vegetation; (ii) prey abundance; and (iii) web damage, on web architecture. Argiope keyserlingi webs exhibited geometric plasticity by having larger prey capture areas and spiral distances in open habitats. Decoration design did not differ between habitats however. Variation in space availability, air temperature, prey abundance and web damage explained the variations in web architecture. Potential prey size and diversity differed between habitats but prey abundance did not. As large prey may be important for spider survivorship, foraging success appears to be compromised by occupying closed habitats.  相似文献   

14.
According to optimal foraging theory, spiders should adapt their web building to environmental variations. Until now, there was no data on the influence of simultaneous information coming from different environmental factors on web building behaviour. Under laboratory conditions, we studied the behaviour of Zygiella x-notata in the presence of prey, conspecifics, or both simultaneously. There was a stimulating effect of prey, but web building was not affected by the presence of conspecifics. When spiders and prey were present simultaneously, the effect was similar to that of prey alone; it seemed that there was no interactive influence of both factors. We discussed about the use of environmental information by spiders in foraging behaviour.  相似文献   

15.
Species-specific differences in prey-capture success of co-existing web-building spiders are derived from complex factors: various web parameters, web placement, and the spider's response to prey. By examining these, this study revealed prey-capture modes of three species of web-building spiders of the genus Cyclosa living in the same habitat. Cyclosa octotuberculata and C. argenteoalba showed a greater prey capture rate than C. sedeculata , though size compositions of prey were similar in all species. Cyclosa octotuberculata spins thick silk with large adhesive droplets, which may contribute to the higher stopping and retention abilities of the web. Cyclosa argenteoalba constructs webs at open sites where prey is abundant, and has webs of dense mesh size, which may result in the high stopping ability of webs. In C. sedeculata , the web is less effective for stopping and retaining prey, probably owing to the thin silk with a small amount of sticky material, and the response to prey is not rapid. It seems that the former two species achieve a similar level of foraging success by using different sets of foraging traits and the third species has the disadvantage in most aspects of foraging.  相似文献   

16.
Decisions regarding foraging patch residence time and the assessmentof patch quality may be mediated by various sources of information.This study examined the use of sensory cues by hunting spidersto assess prey density in the absence of prey capture. Adultfemale wolf spiders [Schizocosa ocreata (Hentz); Lycosidae]had food withheld for 4 days and then were exposed to artificialforaging patches containing four densities of crickets (0, 3,10, 20) with different sensory stimuli (visual and vibratoryinformation, visual only, and vibratory only). The spiders werenot allowed to feed during trials, and patch residence timewas recorded. The spiders varied patch residence time basedon sensory cues alone and spent more time in patches with higherprey density. With visual information only, spiders could apparentlydistinguish among prey densities almost as well as with visualand vibratory cues combined, but residence time did not differamong prey densities when only vibratory information was presented.Measurements of vibration levels produced by cricket activityunder experimental sensory treatments conform to test results,suggesting that visual detection of crickets is important inpatch assessment used in determining patch residence time.  相似文献   

17.
Prey captured by a predator may attract kleptoparasites which could significantly reduce the amount of food consumed. Stegodyphus lineatus, a cribellate spider, builds an energetically costly web. Ants raid the webs of S. lineatus to steal prey and behave as kleptoparasites. We investigated ant raids in a natural population of S. lineatus and their influence on the spider’s foraging behaviour. Considering spiders that had captured a prey, 31.2% suffered an ant raid within 24 h after the prey capture. Experimental tests showed that the response to ant raid is to delay web rebuilding and this was independent of a spider’s previous foraging success. There was a tendency for spiders that were exposed to ants to build larger webs. Neither prey-handling duration nor prey consumption was modified after exposure to ants. These results suggest that Stegodyphus lineatus adapt its web-building behaviour in response to the risk of kleptoparasitism.  相似文献   

18.
Prey subsidies originating from detritus add nutrients and energy to arboreal communities. Measurement of this subsidy is required in the understanding of how food web dynamics respond to changes in surrounding environments. Shrub spiders are one of the key predators involved in food web coupling. We evaluate the effects of potential changes in prey availabilities during secondary succession on the contribution of subsidy from detrital food webs to shrub spiders and how different spider feeding guilds used the subsidy of prey from detrital food webs. We measured the relative importance of the subsidy for the spider feeding guilds, using the ratios of stable isotopes of C (δ13C), and N (δ15N) and C isotope discrimination (Δ14C). Diet age was calculated from Δ14C values, because old diet ages of spiders indicate that the spiders consume prey from detrital food sources. Dominant aerial prey (Diptera) had a distinctively old diet age compared with arboreal prey, which indicates that aerial prey were subsidized from detrital food webs. Sit-and-wait spiders tended to have an older diet age than active hunting spiders, which indicates that sit-and-wait spiders depended more on subsidies. Diet age varied only slightly for spiders in stands of different ages, indicating that rates at which spiders use grazing and detrital prey are probably determined more by foraging strategies and not by stand age. A dominance of sit-and-wait predators will lead to higher detrital subsidy inputs in shrub habitats. This study highlights the effect of shrub spider community structure (feeding guild composition) on the volume of the subsidy received from the detrital food web.  相似文献   

19.
Understanding the social organization of group‐living organisms is crucial for the comprehension of the underlying selective mechanisms involved in the evolution of cooperation. Division of labour and caste formation is restricted to eusocial organisms, but behavioural asymmetries and reproductive skew is common in other group‐living animals. Permanently, social spiders form highly related groups with reproductive skew and communal brood care. We investigated task differentiation in nonreproductive tasks in two permanently and independently derived social spider species asking the following questions: Do individual spiders vary consistently in their propensity to engage in prey attack? Are individual spiders' propensities to engage in web maintenance behaviour influenced by their previous engagement in prey attack? Interestingly, we found that both species showed some degree of task specialization, but in distinctly different ways: Stegodyphus sarasinorum showed behavioural asymmetries at the individual level, that is, individual spiders that had attacked prey once were more likely to attack prey again, independent of their body size or hunger level. In contrast, Anelosimus eximius showed no individual specialization, but showed differentiation according to instar, where adult and subadult females were more likely to engage in prey attack than were juveniles. We found no evidence for division of labour between prey attack and web maintenance. Different solutions to achieve task differentiation in prey attack for the two species studied here suggest an adaptive value of task specialization in foraging for social spiders.  相似文献   

20.
The agonistic display repertoire of myrmecophagous Zodarion rubidum has five displays. This is fewer than in other spiders, which is a result of the short time spent in contests (4 s). Such a short duration seems to be an adaptation to living among foraging ants, which are dangerous to spiders. The interaction procedure was markedly affected by the presence of preyimmobilized ant. Contests between individuals without prey, or each holding prey, were usually resolved by leg waving. But contests between an individual without and an individual with prey escalated to more aggressive levels. Nevertheless, spiders were never observed to harm or cannibalize one another. Absence of cannibalism is explained as a result of diet specialization: only ants elicit a predatory behavior and provide Zodarion spiders with optimal nutrients. Some spiders used kleptobiosis to gain ants. They first tried to gain immobilized prey aggressively and if failed they adopted a stealthy tactic and shared the prey with the owner. Kleptobiosis is an alternative foraging strategy for Zodarion spiders as it reduces risks associated with hunting dangerous ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号