首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bovine adrenal medulla plasma membranes were purified by a differential centrifugation procedure using sucrose and Urografin discontinuous density gradients; the membranes were enriched 10-12-fold in acetylcholinesterase activity and [3H]ouabain binding sites. Specific (+)-[3H]PN200-110 binding to these membranes amounted to 90% of total binding and was saturable and of high affinity (KD = 41 pM; Bmax = 119 fmol/mg of protein) with a Hill coefficient close to 1, a result suggesting the presence of a single, homogeneous population of dihydropyridine receptors. The association and dissociation rate constants were, respectively, 7.5 X 108 M-1 min-1 and 0.023 min-1. Unlabeled (+)-PN200-110 displaced (+)-[3H]PN200-110 binding with a potency 100-fold higher than (-)-PN200-110 (IC50,0.5 and 45nM, respectively). Although the two enantiomers of BAY K 8644 completely displaced (+)-[3H]PN200-110 binding, they exhibited no stereoselectivity (IC50, 69 and 83 nM,respectively). Whereas ( +/- )-nitrendipine very potently displaced (+)-[3H]PN200-110 binding (IC50 = 1.3 nM) verapamil and cinnarizine displaced the binding by only 30 and 40% at 1 microM, and diltiazem increased it by 20% at 10 microM. [3H]Ouabain bound to plasma membranes with a KD of 34 nM and a Bmax of 9.75 pmol/mg of protein, a figure 80-fold higher than the Bmax for (+)-PN200-110. [3H]Ouabain also bound to intact chromaffin cells with a Bmax of 244 fmol/10(6) cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The dihydropyridine binding sites associated with rat neocortical synaptosomes and microvessels were compared using an in vitro [3H]PN 200-110 [(+)-[methyl-3H]-isopropyl 4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-2,6-dimethyl-5- methoxycarbonylpyridine-3-carboxylate] binding assay. Saturation experiments yielded similar KD values (approximately 70 pM) and Bmax values (approximately 400 fmol/mg of protein) for the two membrane preparations. Interaction experiments with [3H]PN 200-110 and various calcium-modulating substances provided further evidence for the practically identical nature of the synaptosomal and microvascular dihydropyridine binding sites. These findings predict that lipophilic dihydropyridines, simultaneously occupying the two central binding sites, have the dual effect of altering neuronal function and local blood flow.  相似文献   

3.
We examined the binding of the 1,4-dihydropyridine (DHP) [3H]PN200-110 to membranes from a fibroblast cell line transfected with the alpha 1 subunit (DHP receptor) of the L-type Ca2+ channel from rabbit skeletal muscle. Binding site affinity (KD) and density (Bmax) were 1.16 +/- 0.31 nM and 142 +/- 17 fmoles/mg protein, respectively. This affinity corresponded closely with that observed in native skeletal muscle. The Ca2+ channel antagonists diltiazem and MDL 12,330A stimulated [3H]PN200-110 binding in a dose-dependent manner while flunarizine, quinacrine and trifluoperazine inhibited binding. Surprisingly, D600 also stimulated [3H]PN200-110 binding in a dose-dependent and stereoselective manner. It is concluded that the fibroblast cells used in this study provide a unique system for interactions of the Ca2+ channel ligands with the alpha 1 subunit of the skeletal muscle L-type Ca2+ channel.  相似文献   

4.
The binding of 125I-labelled human chorionic gonadotropin (HCG) was studied using thick slices (300 micron) of rabbit ovarian tissue. Binding was saturable, reversible, stereospecific, and of high affinity. The amount of binding was proportional to the number of slices used and could be destroyed by boiling. Ovarian slices from eight individual rabbits were found to have two binding sites for 125I-labelled HCG with KD values of 272 +/- 64 and 1263 +/- 274 pM and Bmax values of 25.7 +/- 5.3 and 94.1 +/- 18.8 fmol/mg protein, respectively. In a comparative study the KD and Bmax values were 351 +/- 151 pM and 25.3 +/- 11.1 fmol/mg protein with slices from one ovary and 134 +/- 24 pM and 109 +/- 32 fmol/mg protein with membranes from the contralateral ovary. These data suggest that the binding of HCG can be determined in live tissue.  相似文献   

5.
Chick neural retina cells contain functional L-type voltage-dependent Ca2+ channels sensitive to 1,4-dihydropyridines. To investigate the effects of chronic depolarization, cells were grown in medium containing elevated K+. After 4-h to 4-day treatments with elevated K+ (12-73 mM), there was a concentration-dependent decrease in high affinity [3H]PN200-110 binding. Saturation analysis of cells treated for 4 days with 40 mM K+ showed a reduction in maximum ligand binding with no change in affinity. Control and experimental Bmax values were 70.7 +/- 6.4 and 42.2 +/- 4.5 fmol/mg protein, respectively, and control and experimental KD values were 70.2 +/- 7.4 and 68.6 +/- 7.4 x 10(-12) M. The effect of chronic depolarization was time-dependent, reversible, and without effect on cellular protein content. Reduction in 45Ca2+ uptake following chronic depolarization correlated well with the reduction in [3H]PN200-110 binding. The calcium ionophore A23187, 10(-6) M for 24 h, also decreased the binding site density. The calcium channel antagonist D600 had no effect alone on [3H]PN200-110 binding; however, D600 blocked the down-regulation of calcium channels induced by chronic depolarization. The mechanism for Ca2+ channel down-regulation may involve calcium entry, since the effect was blocked by D600 and mimicked by the calcium ionophore A23187. Chronic depolarization with either elevated K+ or veratridine, or chronic treatment with A23187 had no effect on calcium channels in rat neonatal ventricular myocytes, although these cells express functional channels of the 1,4-dihydropyridine-sensitive class.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The pharmacological specificity and the regional distribution of the N-methyl-D-aspartate receptor-associated 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) binding sites in human postmortem brain tissue were determined by binding studies using (+)-[3H]MK-801. Scatchard analysis revealed a high-affinity (KD = 0.9 +/- 0.2 nM, Bmax = 499 +/- 33 fmol/mg of protein) and a low-affinity (KD = 3.6 +/- 0.9 nM, Bmax = 194 +/- 44 fmol/mg of protein) binding site. The high-affinity site showed a different regional distribution of receptor density (cortex greater than hippocampus greater than striatum) compared to the low-affinity binding site (cerebellum greater than brainstem). The rank order pharmacological specificity and stereoselectivity of the high-(cortex) and low-(cerebellar) affinity binding sites were identical. However, all compounds tested showed greater potency at the high-affinity site in cortex. The results indicate that (+)-[3H]MK-801 binding in human postmortem brain tissue shows pharmacological and regional specificity.  相似文献   

7.
The radioligand dihydropyridine [methyl-3H]PN 200-110 binds to contracting myotubes in culture derived from chick embryo pectoralis muscle. [methyl-3H]PN 200-110 binds specifically to high-affinity sites, with nonspecific binding only between 15 and 30% of the total binding. A Scatchard plot of the specific binding revealed a single high-affinity binding site with a KD (dissociation constant) of 0.5 nM +/- 0.2 nM and Bmax (number of binding sites) of 100 fmol/10(6) nuclei. We employed this sensitive assay to probe the appearance of high-affinity [methyl-3H]PN 200-110 binding sites during myogenesis. The time course of appearance of high-affinity binding sites lags behind that of fusion. Low-calcium media prevented the differentiation of myoblasts and blocked the appearance of high-affinity sites. Chelation of intracellular calcium before or after fusion of myoblasts with the calcium indicator Quin 2 prevented the appearance of dihydropyridine binding sites. These findings are consistent with the view that the expression of dihydropyridine receptors is modulated by the intracellular calcium.  相似文献   

8.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

9.
UC11 cells, derived from a human astrocytoma, have a high density of functional substance P receptors. Radioligand binding studies were conducted with the highly selective neurokinin-1 receptor ligand [3H][Sar9,Met(O2)11]-substance P. Kinetic binding experiments conducted at 4 degrees C yielded an association rate constant k1 of 1.86 x 10(7) M-1 min-1, a dissociation rate constant k-1 of 0.00478 min-1, and a calculated kinetic KD of 257 pM. Saturation binding experiments yielded average values of KD = 447 +/- 103 pM, Bmax = 862 +/- 93 fmol/mg of protein. This Bmax corresponds to more than 150,000 binding sites/cell. Competition binding experiments with unlabeled [Sar9,Met(O2)11]-substance P yielded average values of KD = 491 +/- 48 pM and Bmax = 912 +/- 67 fmol/mg of protein. In [3H]inositol-labeled cells, substance P induced a robust inositol phosphate formation. Inositol trisphosphate levels increased as much as 20-fold within approximately 15 s of addition of substance P. This inositol trisphosphate formation was transient and had returned to baseline within the first 60-120 s. Inositol monophosphate formation, however, was linear for at least 2 h. Structure activity data on binding and inositol monophosphate formation confirmed the presence of a neurokinin-1 receptor subtype in these cells. Thus, the UC11 cell should be a useful model cell for delineating the physiological role of substance P receptors in astrocytes.  相似文献   

10.
Muscarinic cholinergic receptor sites in dog portal veins were analyzed directly using [3H]quinuclidinyl benzilate (QNB) as a ligand. Specific [3H]QNB binding to crude membrane preparations from the isolated veins was saturable, reversible and of high affinity (KD = 15.5 +/- 2.8 pM) with a Bmax of 110 +/- 14.7 fmol/mg protein. Scatchard and Hill plot analyses of the data indicated one class of binding sites. From kinetic analysis of the data, association and dissociation rate constants of 1.91 X 10(9) M-1 min-1 and 0.016 min-1, respectively, were calculated. The dissociation constant calculated from the equation KD = K-1/K+1 was 8.3 pM, such being in good agreement with the Scatchard estimate of KD (15.5 pM). Specific binding of [3H]QNB was displaced by muscarinic agents. Nicotinic cholinergic agents, alpha-bungarotoxin, nicotine and hexamethonium, were ineffective in displacing [3H]QNB binding at 10 microM. Our findings provide direct evidence for the existence of muscarinic cholinergic receptors in dog portal veins.  相似文献   

11.
[3H]Spiroperidol binding to homogenates of rat striatum is saturable and shows either monophasic or biphasic saturation isotherms under specified conditions. In poorly washed membrane fragment preparations, saturation isotherms of [3H]spiroperidol binding are monophasic, revealing an apparently homogeneous set of sites with KD 0.6 +/- 0.3 nM and density 440 +/- 80 fmol/mg protein. However, equilibrium displacement studies of [3H]spiroperidol binding at this site indicate an alpha-adrenergic component in addition to the previously described dopaminergic component. In thoroughly washed membrane fragment preparations, saturation isotherms are clearly biphasic, showing an additional high-affinity site with an approximate KD of 24 +/- 10 pM and an approximate density of 110 +/- 20 fmol/mg protein at a protein concentration of 2.0 mg/ml. Selectivity at this site appears classically dopaminergic, suggesting that the lower affinity site is the primary source of the alpha-adrenergic component of spiroperidol binding.  相似文献   

12.
The existence of dihydropyridine receptor in crayfish striated muscle was proved by Northern blot analysis and 3H PN 200--110 binding. The alpha 1 subunit is encoded by a 8300 nt mRNA population and is expressed as 190 kD protein in crayfish T-tubular system, which binds 3H PN 200--110 (Bmax 1.5 +/- 0.4 pmol/mg protein and KD 6.2 +/- 0.8 nmol/l). The purified protein is phosphorylated by cAMP-dependent protein kinase. The dihydropyridine receptor in crayfish striated muscle also contains alpha 2 subunit, which on Northern blot gives the same signal as the alpha 2 subunit from rabbit skeletal muscle.  相似文献   

13.
Quantitative receptor autoradiographic study of 125I-atrial natriuretic peptide factor (ANF) in the heart of a teleost fish Conger conger has shown that a heterogenous distribution of 125I-ANF binding exists in the different cardiac regions. Elevated ANF binding densities (3,790 fmol/mg protein) were encountered in the innermost layer (tunica intima) of the bulbus arteriosus while lower binding levels (293-403 fmol/mg protein) were revealed in atrium and ventricle. In order to determine 125I-ANF binding characteristics (KD, Bmax) in the above cardiac sites, saturation binding assays were carried out. The results show that low 125I-ANF KD values (28.8-52.6 pM) were found in the atrium and in the bulbus arteriosus with respect to the higher KD values (373 pM) of the ventricle. The number of binding sites were respectively 632 and 1,279 fmol/mg protein for the atrium and the ventricle, while a substantially elevated Bmax of 7,235 fmol/mg protein was found for the bulbus arteriosus. These results may furnish some insights concerning ANF receptor binding activity and its putative regulatory role of different cardiac functions.  相似文献   

14.
Using [3H]-nitrendipine (Nit) and [125I]-omega conotoxin (w-CTX), the cellular and subcellular distribution of calcium channel subtypes in the homogenates of canine small intestinal circular muscle was studied. Nit. bound to the membranes from the circular smooth muscle cells (PM) and to the synaptosomal membranes from the deep muscular plexus (DMP); the Kd and Bmax values of Nit binding from these two sources were similar (Kd 0.4 +/- 0.16 nM and 0.77 +/- 0.24 nM; Bmax 206 +/- 22 and 192 +/- 39 fmol/mg of protein in DMP and PM respectively). w-CTX, however, bound only to the DMP (Kd 18.41 +/- 7.5 pM, Bmax 265 +/- 36 fmol/mg of protein). In DMP, nifedipine (10(-6) M) failed to interact with the binding of w-CTX; similarly, no modulation of Nit binding with unlabelled w-CTX (10(-7) M) could be detected. Therefore w-CTX and Nit binding sites represent two distinct, non-interactive and differentially distributed binding sites in canine small intestine.  相似文献   

15.
The characteristics of the binding sites labeled by the radioligand 2-[125I]iodomelatonin were compared in chicken neuronal retina and retinal pigment epithelium (RPE). Specific binding of 2-[125I]iodomelatonin in both sites was stable, saturable, reversible, and of high affinity. Scatchard analysis revealed an affinity constant (KD) of 446 +/- 55 pM and a total number of binding sites (Bmax) of 25.4 +/- 2.2 fmol/mg of protein for neuronal retina. For RPE the KD was 34.1 +/- 2.2 pM and the Bmax 59.5 +/- 5.2 fmol/mg of protein. Competition experiments with various melatonin analogues gave the following order of affinities: 2-iodomelatonin greater than 2-chloromelatonin greater than melatonin greater than 6-chloromelatonin greater than 6-hydroxymelatonin greater than N-acetylserotonin greater than 6-methoxyharmalan greater than 5-hydroxytryptamine. Linear regression of log Ki values from neuronal retina and RPE gave a highly significant correlation (r = 0.994, n = 8; p less than 0.001). GTP inhibited specific binding to RPE membranes in a concentration-dependent manner, but not in neuronal retinal membranes. The present results strongly suggest that a single type of melatonin receptor is found in neuronal retina and RPE, and that the site in RPE is coupled to a guanine nucleotide-binding regulatory protein (G protein), but that in neuronal retina is not.  相似文献   

16.
Binding of 125I-omega-conotoxin GVIA and [3H]nitrendipine to membranes from bovine adrenal medulla was investigated to test for the presence of N- and L-type Ca2+ channels in adrenal chromaffin cells. Saturable, high-affinity binding sites for 125I-omega-conotoxin and [3H]nitrendipine were detected in a membrane fraction from adrenal medulla. [3H]Nitrendipine binding sites were found to have a KD of 500 +/- 170 pM and a Bmax of 26 +/- 11 pmol/g of protein. 125I-omega-Conotoxin binding sites had a KD of 215 +/- 56 pM and a Bmax of 105 +/- 18 pmol/g of protein, about four times the number of sites found for [3H]nitrendipine. 125I-omega-Conotoxin binding was potently inhibited by unlabeled toxin and Ca2+ but was unaffected by dihydropyridines, verapamil, and diltiazem. [3H]Nitrendipine binding was not affected by omega-conotoxin, whereas it was inhibited by other dihydropyridines. Bay K 8644 potentiated K+-evoked cytosolic Ca2+ transients measured by fura-2 fluorescence, and this potentiation was completely blocked by nifedipine. In contrast, omega-conotoxin had no effect on Bay K 8644-evoked Ca2+ transients. Thus, the binding sites for omega-conotoxin and for nitrendipine appear to be different. The results confirm the presence of L-type Ca2+ channels and open the possibility of N-type Ca2+ channels as the omega-conotoxin binding sites in chromaffin cell membranes.  相似文献   

17.
We compared hemodynamics with [3H]nitrendipine (calcium channel) binding to cardiac membranes from Bio 14.6 cardiomyopathic Syrian hamsters at 4 and 10 months with their F1B controls. A 50% increase in the number (Bmax) of nitrendipine binding sites (calcium channels) was seen only in the 4 month old myopathic vs controls (Bmax = 468 +/- 11 vs 309 +/- 10 fmol/mg prot with no change in affinity (KD) (KD = .65 +/- .12 vs .75 +/- .14 nM), while no differences in Bmax or KD were seen at 10 months (Bmax = 375 +/- 9 vs 362 +/- 7 fmol/mg prot/KD = .82 +/- .18 vs .89 +/- .17 nM) myopathic vs control respectively. Hemodynamic studies revealed no significant differences in cardiac output, cardiac index, stroke volume, heart rate, mean arterial pressure, peripheral resistance, body weight, heart weight at 4 months, but a significant decrease in peripheral resistance (1120 +/- 360 vs 2080 +/- 240) increase in body weight (118 +/- 2 vs 94 +/- 2 grams) and heart weight (97 +/- 5 vs 78 +/- 2 gms/100 gms body weight) in 10 month myopathic vs control animals. We conclude that the onset of cardiomyopathy at 4 months is associated with a selective increase in calcium channel binding sites and heart failure at 10 months is associated with a relative decrease in these sites.  相似文献   

18.
Purified adrenomedullary plasma membranes contain two high-affinity binding sites for 125I-omega-conotoxin, with KD values of 7.4 and 364 pM and Bmax values of 237 and 1,222 fmol/mg of protein, respectively. Dissociation kinetics showed a biphasic component and a high stability of the toxin-receptor complex, with a t1/2 of 81.6 h for the slow dissociation component. Unlabeled omega-conotoxin inhibited the binding of the radioiodinated toxin, adjusting to a two-site model with Ki1 of 6.8 and Ki2 of 653 pM. Specific binding was not affected by Ca2+ channel blockers or activators, cholinoceptor antagonists, adrenoceptor blockers, Na+ channel activators, dopaminoceptor blockers, or Na+/H+ antiport blockers, but divalent cations (Ca2+, Sr2+, and Ba2+) inhibited the toxin binding in a concentration-dependent manner. The binding of the dihydropyridine [3H]nitrendipine defined a single specific binding site with a KD of 490 pM and a Bmax of 129 fmol/mg of protein. At 0.25 microM, omega-conotoxin was not able to block depolarization-evoked Ca2+ uptake into cultured bovine adrenal chromaffin cells depolarized with 59 mM K+ for 30 s, whereas under the same conditions, 1 microM nitrendipine inhibited uptake by approximately 60%. When cells were hyperpolarized with 1.2 mM K+ for 5 min and then Ca2+ uptake was subsequently measured during additions of 59 mM K+. Omega-conotoxin partially inhibited Ca2+ uptake in a concentration-dependent manner. These results suggest that two different types of Ca2+ channels might be present in chromaffin cells. However, the molecular identity of omega-conotoxin binding sites remains to be determined.  相似文献   

19.
We obtained evidence that amiloride specifically potentiates 125I-labeled alpha-rat atrial natriuretic peptide (1-28) [atrial natriuretic peptide (ANP)-(99-126); rANP] binding to cerebral capillaries isolated from the rat cerebral cortex. The binding parameters, KD of 173 pM and Bmax of 159 fmol/mg of protein, became 33 pM and 88 fmol/mg of protein, respectively, when 10(-4) M amiloride was added to the incubation medium. When the effect of rANP was investigated on in vitro 22Na+ uptake into isolated cerebral capillaries, 10(-7) M rANP significantly inhibited the uptake in the presence of 1.0 mM ouabain, 1.0 mM furosemide, and 2.0 mM LiCl in the uptake buffer, a finding suggesting a specific inhibitory effect of rANP on amiloride-sensitive Na+ transport. Thus, the possibility that ANPs control amiloride-sensitive Na+ transport at the blood-brain barrier by interacting with specific receptors has to be considered.  相似文献   

20.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号