首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An Escherichia coli mutant capable of continued DNA synthesis in the presence of chloramphenicol has been isolated by an autoradiographic technique. The DNA synthesis represents semiconservative replication of E. coli DNA. It can occur in the presence of chloramphenicol or in the absence of essential amino acids, but not in the presence of an RNA synthesis inhibitor, rifampin. The mutant, termed constitutive stable DNA replication (Sdrc) mutant, appears to grow normally at 37 °C with a slightly slower growth rate than that of the parental strain. DNA replication in the mutant occurs at a reduced rate after 60 minutes in the absence of protein synthesis and continues linearly for several hours thereafter. This distinct slowdown in the DNA replication rate is due to a reduced rate of DNA synthesis in all the cells in the population. Constitutive stable DNA replication appears to require the dnaA and dnaC gene products. The sdrc mutation has been mapped near the pro-lac region of the E. coli chromosome. The mutation is recessive. Autoradiographic experiments have ruled out the possibility of multiple initiations during a cell cycle. The implication of the above findings is discussed in terms of the regulation of chromosome replication in E. coli.  相似文献   

2.
Summary An Escherichia coli 15 strain has been constructed which contains, in addition to the plasmids inherent to E. coli 15 (P 1-like DNA and minicircular DNA), the colicinogenic factor E1 (Col E1). Whereas the P 1-like DNA of E. coli 15 is unaffected by the uptake of the colicin plasmid, the number of copies of minicircular DNA of E. coli 15 decreases and an equivalent amount of Col E1 DNA becomes established in the cell. The ratio between these two small plasmids is dependent on the growth temperature. The mode of replication of minicircular DNA and Col E1 DNA is very similar, but is different in various respects from that of the P 1-like plasmid: 1. Both small plasmids continue to replicate in the presence of chloramphenicol, whereas the replication of P 1-like DNA stops like the chromosomal DNA. 2. Rifampicin inhibits the synthesis of both small plasmids rather rapidly. The replication of P 1-like DNA continues during the remaining replication cycle of the chromosome in the presence of rifampicin. 3. The replication of Col E1 DNA and of the minicircular DNA still proceeds at elevated temperatures (45–50°C), whereas little or no incorporation of 3H-thymidine into P 1-like DNA is observed at these temperatures. 4. Mutants have been obtained, which show altered properties in the maintenance and replication of the plasmids without being affected in the replication of the chromosomal DNA. In all these mutants the replication and (or) maintenance of the minicircular DNA of E. coli 15 and Col E1 DNA is affected in the same way, but not that of the P 1-like plasmid.  相似文献   

3.
Escherichia coli strains 15T- (555-7) and B/r were grown in the presence of thymine-14C to label all DNA. The ability of these parental DNA's to undergo cycles of replication subsequent to cellular irradiation with either X-ray or ultraviolet light (UV) was followed with density labels. Exposed cells were shifted into the density medium at times which were approximately multiples of normal rounds of DNA replication. A portion of the parental DNA, replicated semiconservatively once during an initial cycle following UV or X-irradiation in E. coli, failed to replicate again within the time studied. The time course of semiconservative parental DNA replication is altered.  相似文献   

4.
大肠杆菌细胞DNA复制、修复和重组途径的衔接   总被引:2,自引:0,他引:2  
以大肠杆菌为例围绕相关领域的研究动态进行分析和总结.DNA复制、损伤修复和重组过程的相互作用关系研究是当今生命科学研究的前沿和热点之一.越来越多的研究表明,在分子水平上,DNA复制、损伤修复和重组过程既彼此独立,又相互依存.上述途径可以通过许多关键蛋白质之间的相互作用加以协调和整合,并籍此使遗传物质DNA得到有效的维护和忠实的传递.需要指出的是,基于许多细胞内关键蛋白及其功能在生物界中普遍保守性的事实,相信来自大肠杆菌有关DNA复制、修复和重组之间的研究成果也会对相关真核生物的研究提供借鉴.  相似文献   

5.
Fluorescence microscopic methods have been used to characterize the cell cycle of Bacillus subtilis at four different growth rates. The data obtained have been used to derive models for cell cycle progression. Like that of Escherichia coli, the period required by B. subtilis for chromosome replication at 37°C was found to be fairly constant (although a little longer, at about 55 min), as was the cell mass at initiation of DNA replication. The cell cycle of B. subtilis differed from that of E. coli in that changes in growth rate affected the average cell length but not the width and also in the relative variability of period between termination of DNA replication and septation. Overall movement of the nucleoid was found to occur smoothly, as in E. coli, but other aspects of nucleoid behavior were consistent with an underlying active partitioning machinery. The models for cell cycle progression in B. subtilis should facilitate the interpretation of data obtained from the recently introduced cytological methods for imaging the assembly and movement of proteins involved in cell cycle dynamics.  相似文献   

6.
Chromosomal DNA replication intermediates, revealed in ligase-deficient conditions in vivo, are of low molecular weight (LMW) independently of the organism, suggesting discontinuous replication of both the leading and the lagging DNA strands. Yet, in vitro experiments with purified enzymes replicating sigma-structured substrates show continuous synthesis of the leading DNA strand in complete absence of ligase, supporting the textbook model of semi-discontinuous DNA replication. The discrepancy between the in vivo and in vitro results is rationalized by proposing that various excision repair events nick continuously synthesized leading strands after synthesis, producing the observed LMW intermediates. Here, we show that, in an Escherichia coli ligase-deficient strain with all known excision repair pathways inactivated, new DNA is still synthesized discontinuously. Furthermore, hybridization to strand-specific targets demonstrates that the LMW replication intermediates come from both the lagging and the leading strands. These results support the model of discontinuous leading strand synthesis in E. coli.  相似文献   

7.
The recognition of bacterial functions involved in DNA metabolism of bacteriophage T4 might reveal interactions between different enzymes during DNA replication and recombination. To detect such functions we have studied the replication of complete and incomplete T4 chromosomes in various mutant strains of Escherichia coli that are defective in their own DNA metabolism. We found that several E. coli functions can substitute for phage functions in T4 replication and recombination and will discuss here the role of the E. coli pol A gene which codes for DNA polymerase I1–4 and of the dna B and E genes3,5.  相似文献   

8.
Escherichia coli has three DNA damage-inducible DNA polymerases: DNA polymerase II (Pol II), DNA polymerase IV (Pol IV), and DNA polymerase V (Pol V). While the in vivo function of Pol V is well understood, the precise roles of Pol IV and Pol II in DNA replication and repair are not as clear. Study of these polymerases has largely focused on their participation in the recovery of failed replication forks, translesion DNA synthesis, and origin-independent DNA replication. However, their roles in other repair and recombination pathways in E. coli have not been extensively examined. This study investigated how E. coli's inducible DNA polymerases and various DNA repair and recombination pathways function together to convey resistance to 4-nitroquinoline-1-oxide (NQO), a DNA damaging agent that produces replication blocking DNA base adducts. The data suggest that full resistance to this compound depends upon an intricate interplay among the activities of the inducible DNA polymerases and recombination. The data also suggest new relationships between the different pathways that process recombination intermediates.  相似文献   

9.
DNA Pol III holoenzyme (HE) is the major DNA replicase of Escherichia coli. It is a highly accurate enzyme responsible for simultaneously replicating the leading- and lagging DNA strands. Interestingly, the fidelity of replication for the two DNA strands is unequal, with a higher accuracy for lagging-strand replication. We have previously proposed this higher lagging-strand fidelity results from the more dissociative character of the lagging-strand polymerase. In support of this hypothesis, an E. coli mutant carrying a catalytic DNA polymerase subunit (DnaE915) characterized by decreased processivity yielded an antimutator phenotype (higher fidelity). The present work was undertaken to gain deeper insight into the factors that influence the fidelity of chromosomal DNA replication in E. coli. We used three different dnaE alleles (dnaE915, dnaE911, and dnaE941) that had previously been isolated as antimutators. We confirmed that each of the three dnaE alleles produced significant antimutator effects, but in addition showed that these antimutator effects proved largest for the normally less accurate leading strand. Additionally, in the presence of error-prone DNA polymerases, each of the three dnaE antimutator strains turned into mutators. The combined observations are fully supportive of our model in which the dissociative character of the DNA polymerase is an important determinant of in vivo replication fidelity. In this model, increased dissociation from terminal mismatches (i.e., potential mutations) leads to removal of the mismatches (antimutator effect), but in the presence of error-prone (or translesion) DNA polymerases the abandoned terminal mismatches become targets for error-prone extension (mutator effect). We also propose that these dnaE alleles are promising tools for studying polymerase exchanges at the replication fork.  相似文献   

10.
Torsional tension in intracellular bacteriophage T4 DNA and host cell DNA was measured in infected Escherichia coli cells using the trimethylpsoralen photobinding assay. Early in infection superhelical tension in the host E. coli DNA was gradually reduced until at 8 min post-infection there was no detectable tension. Negative torsional tension in the T4 DNA appeared transiently, reaching a maximum 4 to 6 min post-infection (at 32 °C) and declined to undetectable levels by 10 min. The maximum level of tension averaged over all infecting T4 DNA molecules was equivalent to superhelical density of about σ = ?0.03.Sedimentation studies of the psoralen-associated T4 DNA isolated from infected cells at 5 min post-infection indicated that this DNA was primarily in an intact linear form. This is the first evidence indicating that a linear DNA molecule can acquire torsional tension in vivo: the finding suggests that intracellular T4 DNA can be topologically restrained probably by interaction with other structures in the cell. Effects of inhibitors of DNA gyrase and effects of mutations in T4 gene 39 indicated that the observed torsional tension was introduced by E. coli DNA gyrase, not by the T4 topoisomerase. Studies of the number of nicks required to relax the tension suggest that the entire T4 genome is organized into one topological domain of supercoiling.The possible role of the negative superhelical tension in the initiation of T4 DNA replication was examined. Initiation of DNA replication occurred shortly after the accumulation of tension in T4 DNA. However, replication occurred at near-normal levels under conditions where acquisition of tension was blocked in T4 DNA. Results suggest that although a topoisomerase activity is required for the initiation of DNA replication, the observed torsional tension is not a prerequisite.  相似文献   

11.
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.  相似文献   

12.
The molecular mechanism(s) by which deep-sea bacteria grow optimally under high hydrostatic pressure at low temperatures is poorly understood. To gain further insight into the mechanism(s), a previous study screened transposon mutant libraries of the deep-sea bacterium Photobacterium profundum SS9 and identified mutants which exhibited alterations in growth at high pressure relative to that of the parent strain. Two of these mutants, FL23 (PBPRA3229::mini-Tn10) and FL28 (PBPRA1039::mini-Tn10), were found to have high-pressure sensitivity and enhanced-growth phenotypes, respectively. The PBPRA3229 and PBPRA1039 genes encode proteins which are highly similar to Escherichia coli DiaA, a positive regulator, and SeqA, a negative regulator, respectively, of the initiation of DNA replication. In this study, we investigated the hypothesis that PBPRA3229 and PBPRA1039 encode DiaA and SeqA homologs, respectively. Consistent with this, we determined that the plasmid-carried PBPRA3229 and PBPRA1039 genes restored synchrony to the initiation of DNA replication in E. coli mutants lacking DiaA and SeqA, respectively. Additionally, PBPRA3229 restored the cold sensitivity phenotype of an E. coli dnaA(Cs) diaA double mutant whereas PBPRA1039 suppressed the cold sensitivity phenotype of an E. coli dnaA(Cs) single mutant. Taken together, these findings show that the genes disrupted in FL23 and FL28 encode DiaA and SeqA homologs, respectively. Consequently, our findings add support to a model whereby high pressure affects the initiation of DNA replication in P. profundum SS9 and either the presence of a positive regulator (DiaA) or the removal of a negative regulator (SeqA) promotes growth under these conditions.Despite the fact that more than 70% of the earth''s surface is covered by oceans, which have an average temperature of 3°C and exert an average hydrostatic pressure of 38 MPa (atmospheric pressure is ∼0.1 MPa), little is understood about the molecular basis of cold- and high-pressure-adapted deep-ocean life. The discovery and isolation of the pyschrotolerant facultative piezophile (high-pressure-loving organism) Photobacterium profundum SS9 (8) have made it possible to more readily address the mechanisms of piezophilic growth at cold temperatures (for a recent review, see reference 3). P. profundum SS9 is a gammaproteobacterium originally isolated from an amphipod homogenate obtained from the Sulu Sea in the Philippines at a depth of 2.5 km and a temperature of 9°C (8). Although it grows optimally at 28 MPa and 15°C, P. profundum SS9 can also grow over a wide range of pressures (0.1 to 90 MPa) and temperatures (2 to 20°C). The ability to grow at atmospheric pressure has made P. profundum SS9 more amenable to genetic manipulation than obligate piezophiles. The P. profundum SS9 genome has been sequenced and annotated (26) and consists of two chromosomes and an 80-kb plasmid. It was determined that the 80-kb plasmid is nonessential for the piezophilic growth of P. profundum SS9 (26).To gain insights into the genetic basis of high-pressure-adapted growth, transposon mutant libraries of P. profundum SS9R (a rifampin [rifampicin]-resistant derivative of SS9) were screened in liquid culture for mutants with defects in the ability to grow at high pressure (45 MPa, 15°C) (19). One of the putative high-pressure-sensitive mutants (FL23) isolated from these screens had a mini-Tn10 insertion in the gene PBPRA3229, which encodes a protein with 75% identity (85% similarity) to Escherichia coli DiaA (DnaA initiator-associating factor) (14). Although FL23 shows growth defects at 0.1 MPa (15°C) relative to the parent strain, the ratio of growth at 45 MPa to growth at 0.1 MPa and 15°C is substantially reduced compared to that of the parent strain, confirming that disruption of PBPRA3229 results in a high-pressure sensitivity growth phenotype (19).In E. coli, DiaA is necessary to ensure the timely initiation of DNA replication (14). DiaA forms a tetramer and binds to multiple molecules of DnaA, promoting (i) the binding of DnaA to the origin of replication in E. coli (known as oriC), (ii) ATP-DnaA-specific conformational changes in the oriC complex, and (iii) the unwinding of oriC DNA (17). Consequently, E. coli DiaA acts as a positive regulator of the initiation of DNA replication. In the absence of DiaA, initiation of DNA replication is delayed and in E. coli cells with two oriC copies, it only occurs from one of these, resulting in cells with three copies of their chromosome (14). In contrast, this is an extremely rare occurrence in wild-type E. coli cells. Although disruption of diaA in E. coli results in an asynchronous DNA replication phenotype, it does not appear to affect growth or morphology at atmospheric pressure at 37°C in a genetic background with a wild-type dnaA gene. However, disruption of the diaA gene suppresses the cold sensitivity phenotype of an E. coli dnaA(Cs) mutant at 30°C.Even though PBPRA3229 is highly similar to E. coli DiaA, it also shows 45% identity (65% similarity) to a phosphoheptose isomerase in E. coli known as GmhA (4). GmhA is involved in lipopolysaccharide (LPS) biosynthesis and catalyzes the isomerization of d-sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate, which is the first step in the biosynthesis of ADP-glycero-manno-heptose, a subunit of the LPS inner core. The LPS forms the outermost leaflet of the outer membrane of gram-negative bacterial cells, and in E. coli K-12 strains, the LPS is composed of inner and outer sugar cores and lipid A (25). E. coli K-12 mutants lacking GmhA produce truncated LPS species relative to that of the parent strain due to the absence of the inner core, which can be easily visualized by gel electrophoresis followed by silver staining (4). Due to the high degree of sequence similarity between PBPRA3229 and GmhA, it is also possible that FL23 has an alteration in its LPS relative to that of the parent strain.In contrast to DiaA, SeqA is a negative regulator of the initiation of DNA replication in E. coli (20). E. coli SeqA binds to hemimethylated oriC and prevents the binding of ATP-DnaA. Disruption of seqA in E. coli also results in an asynchronous-replication phenotype. However, the effect of DiaA on the timing of DNA replication initiation appears to be SeqA independent (14). Interestingly, a putative P. profundum SS9R seqA transposon insertion mutant (PBPRA1039::Tn10) was identified as having high-pressure-enhanced growth at 45 MPa and 15°C relative to its growth at atmospheric pressure (19). Therefore, this preliminary finding suggests that the removal of a negative regulator of the initiation of DNA replication could promote the growth of P. profundum SS9R at high pressure.In this study, we investigated the hypothesis that proteins that regulate the initiation of DNA replication play a key role in the piezophilic growth of P. profundum SS9. We determined that PBPRA3229 and PBPRA1039 encode functional DiaA and SeqA homologs, respectively, and we propose a model whereby the initiation of DNA replication is sensitive to high pressure and either the production of a positive regulator (DiaA) or the removal of a negative regulator (SeqA) can promote growth under these conditions.  相似文献   

13.
The pathogenicity of enterohemorrhagic Escherichia coli (EHEC) strains depends on the production of Shiga toxins that are encoded on lambdoid prophages. Effective production of these toxins requires prophage induction and subsequent phage replication. Previous reports indicated that lytic development of Shiga toxin-converting bacteriophages is inhibited in amino acid-starved bacteria. However, those studies demonstrated that inhibition of both phage-derived plasmid replication and production of progeny virions occurred during the stringent as well as the relaxed response to amino acid starvation, i.e., in the presence as well as the absence of high levels of ppGpp, an alarmone of the stringent response. Therefore, we asked whether ppGpp influences DNA replication and lytic development of Shiga toxin-converting bacteriophages. Lytic development of 5 such bacteriophages was tested in an E. coli wild-type strain and an isogenic mutant that does not produce ppGpp (ppGpp0). In the absence of ppGpp, production of progeny phages was significantly (in the range of an order of magnitude) more efficient than in wild-type cells. Such effects were observed in infected bacteria as well as after prophage induction. All tested bacteriophages formed considerably larger plaques on lawns formed by ppGpp0 bacteria than on those formed by wild-type E. coli. The efficiency of synthesis of phage DNA and relative amount of lambdoid plasmid DNA were increased in cells devoid of ppGpp relative to bacteria containing a basal level of this nucleotide. We conclude that ppGpp negatively influences the lytic development of Shiga toxin-converting bacteriophages and that phage DNA replication efficiency is limited by the stringent control alarmone.  相似文献   

14.
Unlike bacteria such as Escherichia coli and Bacillus subtilis, several species of freshwater cyanobacteria are known to contain multiple chromosomal copies per cell, at all stages of their cell cycle. We have characterized the replication of multi-copy chromosomes in the cyanobacterium Synechococcus elongatus PCC 7942 (hereafter Synechococcus 7942). In Synechococcus 7942, the replication of multi-copy chromosome is asynchronous, not only among cells but also among multi-copy chromosomes. This suggests that DNA replication is not tightly coupled to cell division in Synechococcus 7942. To address this hypothesis, we analysed the relationship between DNA replication and cell doubling at various growth phases of Synechococcus 7942 cell culture. Three distinct growth phases were characterised in Synechococcus 7942 batch culture: lag phase, exponential phase, and arithmetic (linear) phase. The chromosomal copy number was significantly higher during the lag phase than during the exponential and linear phases. Likewise, DNA replication activity was higher in the lag phase cells than in the exponential and linear phase cells, and the lag phase cells were more sensitive to nalidixic acid, a DNA gyrase inhibitor, than cells in other growth phases. To elucidate physiological differences in Synechococcus 7942 during the lag phase, we analysed the metabolome at each growth phase. In addition, we assessed the accumulation of central carbon metabolites, amino acids, and DNA precursors at each phase. The results of these analyses suggest that Synechococcus 7942 cells prepare for cell division during the lag phase by initiating intensive chromosomal DNA replication and accumulating metabolites necessary for the subsequent cell division and elongation steps that occur during the exponential growth and linear phases.  相似文献   

15.
We studied action mechanisms of pantoyl lactone and butyl alcohol on the macromolecular synthesis of E. coli. Protein synthesis was not significantly suppressed by these agents. DNA synthesis was more remarkably affected than RNA synthesis by them. Synchronous cultures of E. coli were subsequently used to investigate the inhibition of DNA replication with these agents. It was consequently shown that these agents inhibit the initiation of a new cycle of DNA replication in this organism but permit the completion of DNA replication initiated before addition of these agents to the medium.  相似文献   

16.
17.
Abstract

The past decade has witnessed an exciting evolution in our understanding of eukaryotic DNA replication at the molecular level. Progress has been particularly rapid within the last few years due to the convergence of research on a variety of cell types, from yeast to human, encompassing disciplines ranging from clinical immunology to the molecular biology of viruses. New eukaryotic DNA replicases and accessory proteins have been purified and characterized, and some have been cloned and sequenced. In vitro systems for the replication of viral DNA have been developed, allowing the identification and purification of several mammalian replication proteins. In this review we focus on DNA polymerases alpha and delta and the polymerase accessory proteins, their physical and functional properties, as well as their roles in eukaryotic DNA replication.  相似文献   

18.
The mechanism of enzymatic elongation by Escherichia coli DNA polymerase II of a DNA primer, which is annealed to a unique position on the bacteriophage fd viral DNA, has been studied. The enzyme is found to dissociate from the substrate at specific positions on the genome which act as “barriers” to further primer extension. It is believed these are sites of secondary structure in the DNA. When the template is complexed with E. coli DNA binding protein many of these barriers are eliminated and the enzyme remains associated with the same primer-template molecule during extensive intervals of DNA synthesis. Despite the presence of E. coli DNA binding protein, at least one barrier on the fd genome remains rate-limiting to chain extension and disturbs the otherwise processive mechanism of DNA synthesis. This barrier is overcome by increasing the concentration of enzyme.In contrast, it is found that DNA polymerase I is not rate-limited by structural barriers in the template, however, it exhibits a non-processive mechanism of elongation.These findings provide a framework for understanding the necessity for participation of proteins other than a DNA polymerase in chain extension during chromosomal replication.  相似文献   

19.
A fragment of the α-fetoprotein (AFP) structural gene was purified and amplified by bacterial cloning techniques. Double-stranded DNAAFP was constructed from a cDNA copy of greater than 95% pure mRNAAFP and inserted into E. coli plasmid pBR322 by poly(dA-dT)-linkers. Chimeric plasmid DNA isolated from transformants of E. coli strain χ1776 have been shown to contain α-fetoprotein sequences by hybridization to labeled mRNAAFP. One clone, designated pA5 (chimeric plasmid pBR322 containing a cDNAAFP sequence isolated from clone 5), has been studied in more detail. The inserted sequence of approximately 950 nucleotide pairs was positively identified by a hybridization-translation procedure. Hybridization of [3H]uridine-labeled poly(A)-containing RNA from an AFP-secreting cell line to excess pA5 DNA immobilized on nitrocellulose filters was used to show the selectivity of this probe for detecting expression of the AFP gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号