首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have developed immortalized epithelial cystic fibrosis (CF) cell lines by infecting cultured nasal polyp cells with a SV40/Adenol2 hybrid virus. The cell lines obtained are epithelial in nature as shown by cytokeratin production and morphology, although cytokeratins 4 and 13 typical of primary nasal polyp cells are produced at a much reduced rate. Ussing chamber experiments showed that the precrisis CF cell line NCF3 was able to perform trans-cellular chloride transport when activated by agents which elevate intracellular calcium. cAMP agonists had no effect on chloride flux in NCF3 as expected for CF cells. The apical chloride channels found with the patch clamp technique in NCF3 and in the postcrisis cell line NCF3A have a conductance similar to that of chloride channels found earlier in normal and CF epithelial cells. The channels show a delay in the onset of activity in off-cell patches and are not activated by increased cAMP levels in the cell. This indicates that immortalized CF epithelial cells will provide a useful model for the study of cystic fibrosis.  相似文献   

2.
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. We hypothesized that stimulation of Ca(2+) entry from the extracellular space could trigger a sustained Ca(2+) signal to activate Ca(2+)-dependent Cl(-) channels. Cytosolic [Ca(2+)](i) was measured in non-polarized human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Primary human CF and non-CF airway epithelial monolayers as well as Calu-3 monolayers were used to assess anion secretion. In vivo nasal potential difference measurements were performed in non-CF and two different CF mouse (DeltaF508 homozygous and bitransgenic gut-corrected but lung-null) models. Zinc and ATP induced a sustained, reversible, and reproducible increase in cytosolic Ca(2+) in CF and non-CF cells with chemistry and pharmacology most consistent with activation of P2X purinergic receptor channels. P2X purinergic receptor channel-mediated Ca(2+) entry stimulated sustained Cl(-) and HCO(3)(-) secretion in CF and non-CF epithelial monolayers. In non-CF mice, zinc and ATP induced a significant Cl(-) secretory response similar to the effects of agonists that increase intracellular cAMP levels. More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.  相似文献   

3.
4.
5.
Shen B  Li X  Wang F  Yao X  Yang D 《PloS one》2012,7(4):e34694
Mutations in the gene-encoding cystic fibrosis transmembrane conductance regulator (CFTR) cause defective transepithelial transport of chloride (Cl(-)) ions and fluid, thereby becoming responsible for the onset of cystic fibrosis (CF). One strategy to reduce the pathophysiology associated with CF is to increase Cl(-) transport through alternative pathways. In this paper, we demonstrate that a small synthetic molecule which forms Cl(-) channels to mediate Cl(-) transport across lipid bilayer membranes is capable of restoring Cl(-) permeability in human CF epithelial cells; as a result, it has the potential to become a lead compound for the treatment of human diseases associated with Cl(-) channel dysfunction.  相似文献   

6.
We complemented the Cl- conductance defect in cystic fibrosis lymphocytes by transfection with wild-type cDNA for the cystic fibrosis transmembrane conductance regulator (CFTR). Stable transfectants were selected and subjected to molecular and functional analyses. We detected expression of endogenous CFTR mRNA in several CF and non-CF lymphoid cell lines by PCR. Expression from cDNA in the transfectants was demonstrated by amplifying vector-specific sequences. Both fluorescence and patch-clamp assays showed that transfectants expressing wild-type CFTR acquired properties previously associated with Cl- conductance (GCl) regulation in non-CF lymphocytes: (i) GCl was elevated in the G1 phase of the cell cycle, (ii) cells fixed at G1 increase GCl in response to increased cellular cAMP or Ca2+, (iii) agonist-induced increases in GCl were lost as the cells progressed to the S phase of the cell cycle. The cell cycle and agonist dependent regulation of GCl was not observed in CF lymphocytes transfected with CFTR cDNA containing stop codons in all reading frames at exon 6. Our findings indicate that lymphocytes express functional CFTR since wild-type CFTR corrects the defects in Cl- conductance regulation found in CF lymphocytes. Evaluation of the mechanism of this novel, CFTR-mediated regulation of GCl during cell cycling should provide further insights into the function of CFTR.  相似文献   

7.
Rectal biopsies from cystic fibrosis (CF) patients show defective cAMP-activated Cl(-) secretion and an inverse response of the short-circuit current (I(sc)) toward stimulation with carbachol (CCh). Alternative Cl(-) channels are found in airway epithelia and have been attributed to residual Cl(-) secretion in CF colon. The aim of the present study was to investigate ion conductances causing reversed I(sc) upon cholinergic stimulation. Furthermore, the putative role of an alternative Ca(2+)-dependent Cl(-) conductance in human distal colon was examined. Cholinergic ion secretion was assessed in the absence and presence of cAMP-dependent stimulation. Transepithelial voltage and I(sc) were measured in rectal biopsies from non-CF and CF individuals by means of a perfused micro-Ussing chamber. Under baseline conditions, CCh induced a positive I(sc) in CF rectal biopsies but caused a negative I(sc) in non-CF subjects. The CCh-induced negative I(sc) in non-CF biopsies was gradually reversed to a positive response by incubating the biopsies in indomethacin. The positive I(sc) was significantly enhanced in CF and was caused by activation of a luminal K(+) conductance, as shown by the use of the K(+) channel blockers Ba(2+) and tetraethylammonium. Moreover, a cAMP-dependent luminal K(+) conductance was detected in CF individuals. We conclude that the cystic fibrosis transmembrane conductance regulator is the predominant Cl(-) channel in human distal colon. Unlike human airways, no evidence was found for an alternative Cl(-) conductance in native tissues from CF patients. Furthermore, we demonstrated that both Ca(2+)- and cAMP-dependent K(+) secretion are present in human distal colon, which are unmasked in rectal biopsies from CF patients.  相似文献   

8.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.  相似文献   

9.
The gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an ATP binding cassette (ABC) transporter that functions as a phosphorylation- and nucleotide-regulated chloride channel, is mutated in cystic fibrosis (CF) patients. Deletion of a phenylalanine at amino acid position 508 (DeltaF508) in the first nucleotide binding domain (NBD1) is the most prevalent CF-causing mutation and results in defective protein processing and reduced CFTR function, leading to chloride impermeability in CF epithelia and heterologous systems. Using a STE6/CFTRDeltaF508 chimera system in yeast, we isolated two novel DeltaF508 revertant mutations, I539T and G550E, proximal to and within the conserved ABC signature motif of NBD1, respectively. Western blot and functional analysis in mammalian cells indicate that mutations I539T and G550E each partially rescue the CFTRDeltaF508 defect. Furthermore, a combination of both revertant mutations resulted in a 38-fold increase in CFTRDeltaF508-mediated chloride current, representing 29% of wild type channel activity. The G550E mutation increased the sensitivity of CFTRDeltaF508 and wild type CFTR to activation by cAMP agonists and blocked the enhancement of CFTRDeltaF508 channel activity by 2 mm 3-isobutyl-1-methylxanthine. The data show that the DeltaF508 defect can be significantly rescued by second-site mutations in the nucleotide binding domain 1 region, that includes the LSGGQ consensus motif.  相似文献   

10.
Defective cAMP-stimulated chloride conductance of the plasma membrane of epithelial cell is the hallmark of cystic fibrosis (CF) and results from mutations in the cystic fibrosis transmembrane conductance regulator, CFTR. In the majority of CF patients, mutations in the CFTR lead to its misfolding and premature degradation at the endoplasmic reticulum (ER). Other mutations impair the cAMP-dependent activation or the ion conductance of CFTR chloride channel. In the present work we identify a novel mechanism leading to reduced expression of CFTR at the cell surface, caused by C-terminal truncations. The phenotype of C-terminally truncated CFTR, representing naturally occurring premature termination and frameshift mutations, were examined in transient and stable heterologous expression systems. Whereas the biosynthesis, processing, and macroscopic chloride channel function of truncated CFTRs are essentially normal, the degradation rate of the mature, complex-glycosylated form is 5- to 6-fold faster than the wild type CFTR. These experiments suggest that the C terminus has a central role in maintaining the metabolic stability of the complex-glycosylated CFTR following its exit from the ER and provide a plausible explanation for the severe phenotype of CF patients harboring C-terminal truncations.  相似文献   

11.
12.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP sensitive Cl- channel that is defective in cystic fibrosis (CF). The most frequent mutation, namely deltaF508-CFTR, accounts for 66% of CF. Here we show that cAMP-activation of CFTR occurs via at least two distinct pathways: activation of CFTR molecules already present in the plasma membrane and protein kinase A (PKA)-mediated vesicular transport of new CFTR molecules to the plasma membrane and functional insertion into the membrane. We investigated the mechanisms that are responsible for these activation pathways using the Xenopus laevis oocytes expression system. We expressed CFTR and recorded continuously membrane current (Im), conductance (Gm) and capacitance (Cm), which is a direct measure of membrane surface area. Expression of CFTR alone did not change the plasma membrane surface area. However, activation of CFTR with cAMP increased Im, Gm and Cm while deltaF508-CFTR-expressing oocytes showed no response on cAMP. Inhibition of protein kinase A or buffering intracellular Ca2+ abolished the cAMP-induced increase in Cm while increases of Im and Gm were still present. ATP or the xanthine derivative 8-cyclopentyl-1,3-dipropylxanthine (CPX) did not further activate CFTR. Insertion of pre-formed CFTR into the plasma membrane could be prevented by compounds that interfere with intracellular transport mechanisms such as primaquine, brefeldin A, nocodazole. From these data we conclude that cAMP activates CFTR by at least two distinct pathways: activation of CFTR already present in the plasma membrane and exocytotic delivery of new CFTR molecules to the oocyte membrane and functional insertion into it.  相似文献   

13.
The expression of the cystic fibrosis (CF) gene on its introduction into nonepithelial somatic cells has recently been shown to result in the appearance of distinctive low conductance chloride channels stimulated by cyclic AMP (Kartner, N., Hanrahan, J.W., Jensen, T.J., Naismith, A.L., Sun, S., Ackerley, C.A., Reyes, E.F., Tsui, L.-C., Rommens, J.M., Bear, C.E., and Riordan, J.R. (1991) Cell 64, 681-691; Anderson, M. P., Rich, D.P., Gregory, R.J., Smith, A.E., and Welsh, M.J. (1991) Science 251, 679-682). Since Xenopus oocytes provide a powerful system for ion channel characterization, we have examined whole cell and single channel currents in them after injection of cRNA to program the synthesis of the cystic fibrosis transmembrane conductance regulator (CFTR). This has enabled the direct demonstration that the cyclic AMP activation is mediated by protein kinase A and that CFTR is without effect on the endogenous calcium-activated chloride channels of the oocyte, which have been well characterized previously and widely used as reporters of the expression of G-protein-coupled receptors. These findings strengthen the argument that the CF gene codes for a novel regulated chloride channel rather than a regulatory protein which can modulate separate chloride channel molecules.  相似文献   

14.
Previous evidence suggests that the molecular defect in cystic fibrosis (CF) could reside in an altered chloride conductance of epithelial tissues. Since the brush border of the syncytiotrophoblast of the chorionic villi of human placenta is an abundant source of epithelial membranes and it is unaltered by secondary pathology or treatment we chose to characterize its chloride conductance and to compare it in normal and CF membranes. Chloride transport was studied in microvillar vesicles (MVV) by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Chloride conductance at 23 degrees C: (a) increased by 39% under a membrane potential change of 70 mV; (b) was inhibited by diphenylamine 2-carboxylate (Ki = 150 microM); (c) displayed an activation energy of 3.5 kcal.mol-1. The comparison of the chloride conductance for an inwardly directed gradient of 150 mM Cl- at 23 degrees C (membrane potential set at 0 mV) between CF and control membranes was not significantly different. These findings demonstrate the presence of a chloride conductive pathway in microvillar vesicles from human placenta and preliminary results exclude major differences in the conductance of CF derived material in the absence of neurohormonal stimuli.  相似文献   

15.
Apical membranes of human airway epithelial cells have significant chloride permeability, which is reduced in cystic fibrosis (CF), causing abnormal electrochemistry and impaired mucociliary clearance. At least four types of chloride channels have been identified in these cells, but their relative roles in total permeability and CF are unclear. Noise analysis was used to measure the conductance of chloride channels in human nasal epithelial cells. The data indicate that channels with a mean conductance of 4.5 pS carry most of the chloride current, and that the mean number of such channels per cell is approximately 4,000. Chloride channels in this conductance range were also seen in single-channel recordings.  相似文献   

16.
Mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, a hereditary lethal disease. CFTR is a chloride channel expressed in the apical membrane of epithelia. It is activated by cAMP dependent phosphorylation and gated by the binding of ATP. The impaired chloride transport of some types of cystic fibrosis mutations could be pharmacologically solved by the use of chemical compounds called potentiators. Here it is undertaken the construction of a model of the CFTR activation pathways, and the possible modification produced by a potentiator application. The model yields a novel mechanism for the potentiator action, describing the activatory and inhibitory activities on two different positions in the CFTR activation pathway.  相似文献   

17.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

18.
19.
E Squassoni  G Cabrini  G Berton 《Life sciences》1990,46(18):1265-1270
A chloride conductive pathway has been demonstrated in human skin fibroblasts and a defective cAMP dependent activation of this conductance in Cystic Fibrosis (CF) fibroblasts has been also reported. Chloride transport by the same reported method was studied in normal and CF skin fibroblasts. The stimulation of this pathway was not obtained consistently by the addition of dibutyryl cAMP. The addition of prostaglandin E1 (PGE1) increased the intracellular [cAMP] but did not increase the conductivity of the pathway consistently. Neither the basal nor the dibutyryl cAMP or the PGE1 stimulated chloride conductance differed significantly in CF fibroblasts.  相似文献   

20.
Various K(+) and Cl(-) channels are important in cell volume regulation and biliary secretion, but the specific role of cystic fibrosis transmembrane conductance regulator in cholangiocyte cell volume regulation is not known. The goal of this research was to study regulatory volume decrease (RVD) in bile duct cell clusters (BDCCs) from normal and cystic fibrosis (CF) mouse livers. Mouse BDCCs without an enclosed lumen were prepared as described (Cho, W. K. (2002) Am. J. Physiol. 283, G1320-G1327). The isotonic solution consisted of HEPES buffer with 40% of the NaCl replaced with isomolar amounts of sucrose, whereas hypotonic solution was the same as isotonic solution without sucrose. The cell volume changes were indirectly assessed by measuring cross-sectional area (CSA) changes of the BDCCs using quantitative videomicroscopy. Exposure to hypotonic solutions increased relative CSAs of normal BDCCs to 1.20 +/- 0.01 (mean +/- S.E., n = 50) in 10 min, followed by RVD to 1.07 +/- 0.01 by 40 min. Hypotonic challenge in CF mouse BDCCs also increased relative CSA to 1.20 +/- 0.01 (n = 53) in 10 min but without significant recovery. Coadministration of the K(+)-selective ionophore valinomycin restored RVD in CF mouse BDCCs, suggesting that the impaired RVD was likely from a defect in K(+) conductance. Moreover, this valinomycin-induced RVD in CF mice was inhibited by 5-nitro-2'-(3-phenylpropylamino)-benzoate, indicating that it is not from nonspecific effects. Neither cAMP nor calcium agonists could reverse the impaired RVD seen in CF cholangiocytes. Our conclusion is that CF mouse cholangiocytes have defective RVD from an impaired K(+) efflux pathway, which could not be reversed by cAMP nor calcium agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号