共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The mollu-series glycosphingolipids, O-alpha-D-mannopyranosyl-(1----3)-O-beta-D-mannopyranosyl-(1----4)-O-bet a-D-glucopyranosyl-(1----1)-2-N-tetracosanoyl-(4E)-sphingeni ne and O-alpha-D-mannopyranosyl-(1----3)-O-[beta-D-xylopyranosyl-(1----2])-O- beta-D-mannopyranosyl-(1----4)-O-beta-D-glucopyranosyl-(1----1)-2-N- tetracosanoyl-(4E)-sphingenine, were synthesized for the first time by using 2,3,4-tri-O-acetyl-D-xylopyranosyl trichloroacetimidate, methyl 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranoside, benzyl O-(4,6-di-O-benzyl-beta-D-mannopyranosyl)-(1----4)-2,3,6-tri-O-benzyl-be ta-D- glucopyranoside 9, and (2S,3R,4E)-2-azido-3-O-(tert-butyldiphenylsilyl)-4-octade cene-1,3-diol 6 as the key intermediates. The hexa-O-benzyl disaccharide 9 was prepared by coupling two monosaccharide synthons, namely, 2,3-di-O-allyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl bromide and benzyl 2,3,6-tri-O-benzyl-beta-D-glucopyranoside. It was demonstrated that azide 6 was highly efficient as a synthon for the ceramide part in the coupling with both glycotriaosyl and glycotetraosyl donors, particularly in the presence of trimethylsilyl triflate. 相似文献
3.
4.
Purification and characterization of three (1----4)-beta-D-xylan endohydrolases from germinated barley 总被引:3,自引:0,他引:3
Three (1----4)-beta-D-xylan xylanohydrolases (xylan endohydrolases, EC 3.2.1.8) have been purified 1200-2800-fold from extracts of germinated barley (Hordeum vulgare L. cv. Clipper) by a sequence of ammonium sulphate fractionation, Procion-blue-dye chromatography, ion-exchange and gel filtration chromatography. The enzymes are likely to function in the depolymerization of cell wall arabinoxylans during mobilization of the starchy endosperm. They are classified as endohydrolases on the basis of analyses of products released during hydrolysis of a (1----4)-beta-xylan. The three xylan endohydrolases are monomeric proteins of apparent Mr 41,000 and all have isoelectric points of 5.2. The sequences of the 30 NH2-terminal amino acids of the three enzymes are the same, but it is not yet known whether they represent the products of separate genes or originate by differences in post-translational modification of a single gene product. 相似文献
5.
The substrate specificity of an endo-(1----4)-beta-D-xylanase of the yeast Cryptococcus albidus was investigated using a series of methyl beta-D-xylotriosides. In addition to (1----4) linkages, the enzyme could cleave (1----3) and (1----2) linkages adjacent to a (1----4) linkage and further from the non-reducing end of the substrate. The enzyme could hydrolyse a (1----3) linkage that attached a terminal xylopyranosyl group to a (1----4)-linked xylobiosyl moiety. The enzyme did not attack alpha-D-xylosidic linkages. The rate of cleavage of (1----4) linkages was much higher than those of other linkages at 0.5mM substrate, but the rates were comparable at 20mM substrate when transglycosylation reactions also occurred that facilitated degradation of the substrates. 相似文献
6.
The tetrasaccharide a-D-Glcp-(1----4)-a-D-Xylp-(1----4)-a-D-Xylp-(1----4)-D- Glcp (1) has been synthesized, as a substrate analogue of alpha amylase, by silver perchlorate-catalyzed glycosylation of benzyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O-benzyl-a-D-xylopyranosyl)-beta-D- glucopyranoside (30) with 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D- glucopyranosyl)-a-D-xylopyranosyl chloride or by methyl triflate-promoted condensation of 30 with methyl 2,3-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-a-D-glucopyranosyl)-1-thio- beta-D-xylopyranoside, followed by removal of protecting groups of the resulting tetrasaccharide derivative 40. 相似文献
7.
Purification of Shiga toxin by alpha-D-galactose-(1----4)-beta-D-galactose-(1----4)-beta-D-glucose-(1- ---) receptor ligand-based chromatography 总被引:1,自引:0,他引:1
A simple and rapid method for Shiga toxin purification based on specific binding to the Gal alpha 1----4Gal beta 1----4Glc globotrioside trisaccharide covalently linked to polyacryl/polyvinyl (Fractogel) has been developed. A cell-free sonicate-filtrate of Shigella dysenteriae type 1, strain 114Sd was passed over the globotrioside-Fractogel column, and bound toxin eluted with 6 M guanidine-HCl. A yield of 36 mg pure toxin/1 sonicate-filtrate was obtained, i.e. a one step 1224-fold purification. The recovery of biologically active toxin was 87%. The toxin was purified to homogeneity as shown by native PAGE and SDS-PAGE. 相似文献
8.
The similar three-dimensional structures of barley (1-->3)-beta-glucan endohydrolases and (1-->3,1-->4)-beta-glucan endohydrolases indicate that the enzymes are closely related in evolutionary terms. However, the (1-->3)-beta-glucanases hydrolyze polysaccharides of the type found in fungal cell walls and are members of the pathogenesis-related PR2 group of proteins, while the (1-->3,1-->4)-beta-glucanases function in plant cell wall metabolism. The (1-->3)-beta-glucanases have evolved to be significantly more stable than the (1-->3,1-->4)-beta-glucanases, probably as a consequence of the hostile environments imposed upon the plant by invading microorganisms. In attempts to define the molecular basis for the differences in stability, eight amino acid substitutions were introduced into a barley (1-->3,1-->4)-beta-glucanase using site-directed mutagenesis of a cDNA that encodes the enzyme. The amino acid substitutions chosen were based on structural comparisons of the barley (1-->3)- and (1-->3,1-->4)-beta-glucanases and of other higher plant (1-->3)-beta-glucanases. Three of the resulting mutant enzymes showed increased thermostability compared with the wild-type (1-->3,1-->4)-beta-glucanase. The largest increase in stability was observed when the histidine at position 300 was changed to a proline (mutant H300P), a mutation that was likely to decrease the entropy of the unfolded state of the enzyme. Furthermore, the three amino acid substitutions which increased the thermostability of barley (1-->3,1-->4)-beta-glucanase isoenzyme EII were all located in the COOH-terminal loop of the enzyme. Thus, this loop represents a particularly unstable region of the enzyme and could be involved in the initiation of unfolding of the (1-->3,1-->4)-beta-glucanase at elevated temperatures. 相似文献
9.
10.
11.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside. 相似文献
12.
Insoluble, light-sensitive polymers linked to maltose, maltotriose, a glycogen-branch point trisaccharide, and panose were synthesized and served in a comparative study as acceptors in the glycogen synthase (UDP-D-glucose:glycogen 4-alpha-D-glucosyltransferase, EC 2.4.1.11) reaction. The highest transfer rate was observed with the maltotrio polymer. Extending the acceptor linearly with (1----4)-linked alpha-D-glucopyranosyl residues improved the transfer, whereas (1----6)-linked alpha-D-glucopyranosyl branches decreased it. 相似文献
13.
The conformational dynamics of alpha-(1----4)- and alpha-(1----6)-glucan homooligomers in the nanosecond time domain have been compared by measuring the 13C-nmr longitudinal relaxation times T1 for carbons of the terminal and interior sugar residues. Measurements are reported on monomeric glucose and on oligomers containing up to ten glucose residues at room temperature in aqueous solution at concentrations of 3 and 20 g/dL. The carbons of terminal residues display longer relaxation times than do those of interior residues, presumably as a consequence of a greater degree of conformational mobility of the chain ends. The T1s of the reducing terminal residues of all oligomers are significantly longer than those of the corresponding nonreducing termini, a phenomenon that we associate tentatively with the anomeric equilibrium at the reducing end. Carbons of the reducing terminal residues in the beta-anomeric form relax more slowly than their alpha-anomeric counterparts. At 20 g/dL the mean T1s for carbons of the terminal and interior residues attain asymptotic behavior with increasing chain length at a chain length of about six residues, and carbons of the alpha-(1----4)-linked maltooligomers relax significantly more slowly than those of the corresponding alpha-(1----6)-linked isomaltooligomers. The T1s of both glucan series increase with decreasing concentration. This concentration dependence disappears below 3 g/dL, where the T1s of the two series of homoligomers are no longer distinguishable. This suggests that in dilute aqueous solution at room temperature viscous damping effects predominate over contributions to the T1-sensitive conformational dynamics from structural differences in the glycosidic linkage region. At 3 g/dL the approach to long chain-length asymptotic behavior is more protracted than at 20 g/dL, and the T1s of carbons of interior oligomeric residues appear to match the corresponding high-polymer behavior at a chain length of eight and greater. 相似文献
14.
15.
Methyl 2-O-benzyl-beta-D-galactopyranoside (6) was obtained in five, good yielding steps from methyl beta-D-galactopyranoside (1). Treatment of 1 with tert-butylchlorodiphenylsilane in N,N-dimethylformamide in the presence of imidazole afforded a 6-(tert-butyldiphenylsilyl) ether, which was converted into its 3,4-O-isopropylidene derivative (3). Benzylation of 3 with benzyl bromide-silver oxide in N,N-dimethylformamide, and subsequent cleavage of its acetal and ether groups then afforded 6. On similar benzylation, followed by the same sequence of deprotection, benzyl 2-acetamido-3,6-di-O-benzyl-4-O-[6-O-(tert-butyldiphenylsilyl)-3,4 -O- isopropylidene-beta-D-galactopyranosyl]-2-deoxy-alpha-D-glucopyranoside gave the 2-O-benzyl derivative (10). Compound 10 was converted into its 4,6-O-benzylidene acetal (11). Glycosylation (catalyzed by halide-ion) of 11 with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide afforded the fully protected trisaccharide derivative (13). Cleavage of the benzylidene and then the benzyl groups of 13 furnished the title trisaccharide (16). The structure of 16 was established by 13C-n.m.r. spectroscopy. 相似文献
16.
The "armed" methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside was reacted with "disarmed" phenyl O-(tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-6-O-benzyl-2- deoxy-2-phthalimido-1-thio-beta-D-glucopyranoside in the presence of CuBr2-Bu4NBr complex to give phenyl O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1----4)-O- [(2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl)-(1----3])-6-O-benzyl-2-deoxy -2- phthalimido-1-thio-beta-D-glucopyranoside (6) as a novel glycosyl donor. The glycosylating capability of 6 was further examined using N-iodosuccinimide-triflic acid as a reagent. This led to the synthesis of a tetrasaccharide and a pentasaccharide incorporating the X-antigenic structure represented by 6. 相似文献
17.
H Takata T Kuriki S Okada Y Takesada M Iizuka N Minamiura T Imanaka 《The Journal of biological chemistry》1992,267(26):18447-18452
The transglycosylation reaction catalyzed by neopullulanase was analyzed. Radioactive oligosaccharides were produced when the enzyme acted on maltotriose in the presence of [U-14C]glucose. Some of the radioactive oligosaccharides had only alpha-(1----4)-glucosidic linkages, but others were suggested to have alpha-(1----6)-glucosidic linkages. The existence of alpha-(1----6)-glucosidic linkages in the products from maltotriose with neopullulanase was proven by proton NMR spectroscopy and methylation analysis. We previously reported that the one active center of neopullulanase catalyzes the hydrolysis of alpha-(1----4)- and alpha-(1----6)-glucosidic linkages (Kuriki, T., Takata, H., Okada, S., and Imanaka, T. (1991) J. Bacteriol. 173,6147-6152). These facts proved that neopullulanase catalyzed all four types of reactions: hydrolysis of alpha-(1----4)-glucosidic linkage, hydrolysis of alpha-(1----6)-glucosidic linkage, transglycosylation to form alpha-(1----4)-glucosidic linkage, and transglycosylation to form alpha-(1----6)-glucosidic linkage. The four reactions are typically catalyzed by alpha-amylase, pullulanase, cyclomaltodextrin glucanotransferase, and 1,4-alpha-D-glucan branching enzyme, respectively. These four enzymes have some structural similarities to one other, but reactions catalyzed by the enzymes are considered to be distinctive: the four reactions are individually catalyzed by each of the enzymes. The experimental results obtained from the analysis of the reaction of the neopullulanase exhibited that the four reactions can be catalyzed in the same mechanism. 相似文献
18.
A macromolecular (1----4)-alpha-D-[14C]glucan-protein complex was synthesized with a rat liver preparation and uridine diphosphate D-[14C]glucose. The size of the complex is contributed by both the protein and the (1----4)-alpha-D-glucosyl-oligomer components. Iodoacetamide treatment did not change the migration properties on Bio-Gel A-50m. Therefore, disulfide bonds linking glucan-protein subunits seem not to be involved. The [14C]glucan-protein, precipitated by diluted trichloroacetic acid, was digested by alpha-amylase, phosphorylase a, and proteases. The extent of proteolysis was greater for a complex having fewer D-glucose units incorporated. After proteolytic digestion of that complex, the labeled fragments behaved on electrophoresis, and ion-exchange and gel chromatography as [14C]glucosylated peptides. These findings support previous conclusions that the primer for liver glycogen synthesis is a protein on which glycogen is built up by covalent attachment. 相似文献
19.
An exo-type cellulase (Ex-1) was extracted from Irpex lacteus (Polyporus tulipiferae) and purified essentially to homogeneity. This cellulase attacked cellulosic substrates in an exo-wise fashion to produce almost exclusively cellobiose. In contrast, Ex-1 was found to attack beta-glucans having beta-(1----3)- and beta-(1----4)-mixed linkages in a way similar to an endo-type cellulase. The products formed from barley glucan by Ex-1 were 3(2)-O-beta-D-cellobiosyl-cellobiose much greater than 3(2)-O-beta-D-glucosyl-cellobiose greater than cellobiose much greater than or equal to cellotriose much greater than glucose in the early stage, but no laminaribiose was produced. An endo-type cellulase (En-1) obtained from the same fungus also hydrolyzed beta-glucans but in a typical endo-wise fashion and the products from barley glucan were 3(2)-O-beta-D-glucosyl-cellobiose much greater than 3(2)-O-beta-D-cellobiosyl-cellobiose greater than cellobiose much greater than laminaribiose; no glucose or cellotriose was produced. Thus, it seems likely that En-1 can attack any intramolecular linkage of beta-glucan, while Ex-1 requires the presence of at least cellobiosyl residues adjacent to a beta-(1----3)-D-linked glucosyl residue. This finding, together with the mode of hydrolysis of cellulosic substrates by Ex-1, suggests that the stereochemical structure of successive beta-(1----4)-cellobiosyl residues inserted by beta-(1----3)-D-glucosidic linkage is permissible in the action of Ex-1, although this enzyme prefers the beta-(1----4)-linked cellobiosyl sequence. 相似文献
20.
Jan Dahmén Torbjörn Frejd Göran Magnusson Ghazi Noori Anne-Sofie Carlström 《Carbohydrate research》1984,127(1):27-33
Enzymic hydrolysis of pullulan, followed by acetylation and chromatography, gave acetylated alpha-D-Glcp-(1----6)-alpha-D-Glcp-(1----4)-alpha-D-Glcp-(1----4)-D-Glcp which, with 2-bromoethanol and boron trifluoride etherate in dichloromethane, gave the 2-bromoethyl glycoside. The reactions of the glycoside with methyl 3- mercaptopropionate , methyl 11- mercaptoundecanoate , and octadecanethiol are described, and also its hydrogenolysis to give an ethyl glycoside. The mercaptopropionate -derived, spacer-arm glycoside has been coupled to bovine serum albumin and keyhole limpet haemocyanin. 相似文献