首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The equilibrium and solution structural properties of the iron(III) and copper(II) complexes of an asymmetric salen-like ligand (N,N'-bis(2-hydroxybenzyl)-2,3-diamino-propionic acid, H(3)bhbdpa) bearing a pendant carboxylate group were characterized in aqueous solution by potentiometric, pH-dependent electron paramagnetic resonance (EPR) and UV-Vis (UV-Visible) measurements. In the equimolar systems the pentadentate ligand forms very stable, differently protonated mononuclear complexes with both metal ions. In the presence of iron(III) {NH, PhO(-), COO(-)}, {2NH, 2PhO(-), COO(-)} and {2NH, 2PhO(-), COO(-), OH(-)} coordinated complexes are dominant. The EPR titrations reflected the presence of microscopic complex formation pathways, leading to the formation of binding isomers in case of Cu(H(2)bhbdpa)(+), Cu(Hbhbdpa) and Cu(bhbdpa)(-). The {2NH, 2PhO(-)+COO(-)/H(2)O} coordinated Cu(bhbdpa) is the only species between pH 6-11. At twofold excess of metal ion dinuclear complexes were detected with both iron(III) and copper(II). In presence of iron(III) a mu-carboxylato-mu-hydroxo-bridged dinuclear complex (Fe(2)(bhbdpa)(OH)(3)) is formed from Fe(H(2)bhbdpa)(2+) through overlapping proton release processes, providing one of the rare examples for the stabilization of an endogenous carboxylate bridged diiron core in aqueous solution. The complex Cu(2)(bhbdpa)(+) detected in the presence of copper(II) is a paramagnetic (S=1) species with relatively weakly coupled metal ions.  相似文献   

2.
The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.  相似文献   

3.
Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10.  相似文献   

4.
An in vitro and in vivo study of some copper chelating anti-inflammatory agents for alleviation of inflammation associated with rheumatoid arthritis (RA) has been conducted. Two copper chelating agents, N(1)-(2-aminoethyl)-N(2)-(pyridin-2-ylmethyl)ethane-1,2-diamine ([555-N]) and N-(2-(2-aminoethylamino)ethyl)picolinamide ([H(555)-N]) have been synthesized as their hydrochloride salt; their protonation constants and formation constants with Cu(II), Zn(II) and Ca(II) determined by glass electrode potentiometry at 298K and an ionic strength of 0.15M. Cu(II) formed stable complexes at physiological pH while the in vivo competitors, Zn(II) and Ca(II) formed weak complexes with both chelating agents. Both [555-N] and [H(555)-N] showed better selectivity for Cu(II) than for Zn(II) and Ca(II). Electronic spectra for species formed at physiological pH suggest a square planar geometry. Speciation calculations using a blood plasma model predicted that these copper chelating agents are able to mobilize Cu(II) in vivo, while bio-distribution studies of their (64)Cu(II)-labelled complexes at physiological pH showed tissue accumulation and retention indicating an encouraging biological half life.  相似文献   

5.
The binding of copper(II) and zinc(II) to oxidized glutathione   总被引:1,自引:0,他引:1  
1H and 13C NMR studies of Zn(II) binding to oxidized glutathione (GSSG) in aqueous solution over the pH range 4-11 show that it forms a complex with a 1:1 Zn:GSSG stoichiometry. At pH values between 6 and 11 the metal ligands are the COO- and NH2 groups of the glutamate residues. Below pH 5 the glycine end of the molecule also binds to the metal ions. EPR and visible absorption spectra of Cu(II) GSSG solutions suggest that similar complexes are formed with Cu(II). The solid products obtained from these solutions are shown by analysis and EPR to be primarily binuclear with Cu2GSSG stoichiometry, although the structures depend on the pH and stoichiometry of the solution from which they were obtained.  相似文献   

6.
The GGGTH sequence has been proposed to be the minimal sequence involved in the binding of a fifth Cu(II) ion in addition to the octarepeat region of the prion protein (PrP) which binds four Cu(II) ions. Coordination of Cu(II) by the N- and C-protected Ac-GGGTH-NH(2) pentapeptide (P(5)) was investigated by using potentiometric titration, electrospray ionization mass spectrometry, UV-vis spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry experiments. Four different Cu(II) complexes were identified and characterized as a function of pH. The Cu(II) binding mode switches from NO(3) to N(4) for pH values ranging from 6.0 to 10.0. Quasi-reversible reduction of the [Cu(II)(P(5))H(-2)] complex formed at pH 6.7 occurs at E (1/2)=0.04 V versus Ag/AgCl, whereas reversible oxidation of the [Cu(II)(P(5))H(-3)](-) complex formed at pH 10.0 occurs at E (1/2)=0.66 V versus Ag/AgCl. Comparison of our EPR data with those of the rSHaPrP(90-231) (Burns et al. in Biochemistry 42:6794-6803, 2003) strongly suggests an N(3)O binding mode at physiological pH for the fifth Cu(II) site in the protein.  相似文献   

7.
Complexes of vanadium(IV), vanadyl, are reported to be formed with the trihydroxamic acid deferoxamine (H3DF+). One complex exhibits a reddish-violet color, with a major absorbance peak at 386 nm and a smaller peak at 520 nm. This complex is potentially useful for the microdetermination of vanadyl. The apparent molar absorptivity is 3.91 mM-1 cm-1, and the complex obeys Beer's law in the concentration range of 0.6-63 ppm. Electron spin resonance studies indicate the formation of two vanadyl complexes that are 1:1 in vanadyl and deferoxamine, but have two or three bound hydroxamate groups. ESR and spectrophotometric evidence indicate that the red, low pH form, involves an octahedral vanadium (4+) ion coordinated by three hydroxamate ligands. One of these hydroxamates is displaced by an oxygen at pH greater than 2.8 according to the following equilibria: VO2+ + H3DF+ in equilibrium with VIV(DF)2+ + H3O+, VIV(DF)2+ + H2O in equilibrium with VO(HDF)+ + H+, where pk2 = 2.8.  相似文献   

8.
Eight oxy-bridged dinuclear copper(II) complexes with catecholase-like sites, [Cu(L1)X]2 (HL1 = 1-diethylaminopropan-2-ol, X=N3- 1, NCO- 2, and NO2- 3), [Cu(L2)X]2 (HL2=N-ethylsalicylaldimine, X=NO3- 4, Cl- 5, N3- 6, NCS- 7), and [Cu(L3)]2(ClO4)2, 8 (HL3=N-(salicylidene)-N'-(2-pyridylaldene)propanediamine) have been prepared and characterized. The single crystal X-ray analysis show that the structures of complexes 6 and 8 are dimeric with two adjacent copper(II) atoms bridged by pairs of micro-oxy atoms from the L2 and L3 ligands. Magnetic susceptibility measurements in the temperature range 4-300 K indicate significant antiferromagnetic coupling for 4, 5 and 7 and ferromagnetic coupling for 6 between the copper(II) atoms. The catecholase activity of complexes for the oxidation of 3,5-di-tert-butylcatechol by O2 was studied and it was found that the complexes with the bond distance of Cu(II)...Cu(II) located at 2.9-3.0 A show higher catecholase activity.  相似文献   

9.
Copper(II) complexes of 6-(2-chlorobenzylamino)purine (HL1) and 6-(3-chlorobenzylamino)purine (HL2), respectively, were prepared. Depending on the pH of the medium and the molar ratio of reactants the following mononuclear (trigonal-bipyramidal) and dinuclear (octahedral, trigonal-bipyramidal or tetrahedral) complexes were isolated: [Cu2(mu-HL1)2(mu-Cl2)2(HL1)2Cl2] (1a,b), [Cu2(mu-Cl)2(mu-L1)2(H2O)2] (2a), [Cu2(mu-Cl)2(mu-L2)2(H2O)2] (2b), [Cu(H+L2)2Cl3]Cl.H2O (3a,b), [Cu2(mu-Cl)2(HL1)2Cl2] (4a), and [Cu2(mu-Cl)2(HL2)2Cl2] (4b). The compounds were characterized by elemental analyses, electronic, infrared and mass (FAB+, ES+) spectral data, magnetic susceptibility temperature dependence measurements and molar conductivity data. An X-ray single-crystal structural analysis of [Cu(H+L2)2Cl3]Cl.2H2O (3b) showed that the Cu2+ ion is penta-coordinated by three chloride ions and by two H+L2 ligands. Thus, the Cu2+ ion adopts a distorted trigonal bipyramidal coordination geometry with the protonated H+L2 ligands coordinated in trans apical positions, while the three chloride ions are situated in an equatorial plane. The cytotoxic activity of the complexes was determined by a calcein AM assay. Mouse melanoma cell line B16-FO, human malignant melanoma cell line G361, human osteogenic sarcoma cell line HOS and human breast adenocarcinoma cell line MCF7 were used. IC50 values, the drug concentrations lethal to 50% of the tumor cells, were estimated. One of the important mechanisms responsible for the cytotoxicity of cytokinin-derived compounds, the inhibition of cyclin-dependent kinases by the studied complexes, was also determined.  相似文献   

10.
The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography.In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit.Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit.Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand).On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical.Since these complexes are redox active species, we analyzed their activity toward the nucleic acid DNA, a macromolecule prone to oxidative damage.Interestingly these complexes promoted DNA cleavage following an oxygen dependent pathway.  相似文献   

11.
In order to examine the effect of metallopicolinate complexes with first transition metals and develop complexes that are more active than an insulinomimetic leading compound such as oxovanadium(IV)-picolinate complex, VO(pa)2, 10 metallopicolinate complexes were prepared, and their in vitro insulinomimetic and in vivo antidiabetic activities were evaluated. The in vitro activity was estimated by determining the inhibitory effects of these complexes on free fatty acid release from isolated rat adipocytes treated with epinephrine. Among the complexes, Cu(pa)2, and Mn(pa)3 exhibited higher activity than their respective metal ions and better activity than VO(pa)2. Since Cu(pa)2 was non-toxic in the cultured rat hepatic M cells, this complex was given streptozotocin (STZ)-induced type 1-like diabetic mice by single intraperitoneal injection, and found that this complex exhibited a higher hypoglycemic effect than the VO(pa)2 complex. Based on these results, we propose that Cu(pa)2 may be a potent alternative antidiabetic agent.  相似文献   

12.
High kinetic stability is an important requirement for the Gd(3+) complexes used as contrast enhancement agents in magnetic resonance imaging. The kinetic stabilities of the Gd(3+) complexes formed with DTPA-N-mono(methylamide) (L(3)), DTPA-N'-mono(methylamide) (L(2)) and DTPA-bis(methylamide) (L(1)) are characterized by the rates of the exchange reactions with Eu(3+) and the endogenous Cu(2+) and Zn(2+). The exchange reactions occur via the proton-assisted dissociation of the complexes and direct attack of the exchanging metal ions on the complex. On the basis of the line-shape analysis of the 1H NMR spectra of the LaL(2), obtained in the pH range 2.5-3.5, we assume that for the proton-assisted dissociation of the complexes the formation of an intermediate containing a free iminodiacetate group must be followed with the rupture of the metal-central nitrogen bond. At about pH > or = 5, the reactions between GdL(2) or GdL(3) and Cu(2+) or Zn(2+) proceed predominantly by direct reaction of the reactants, through the formation of dinuclear intermediates. The contribution of the proton-assisted dissociation is highly important for GdL(1), but its reaction with Zn(2+) is significantly slower than the reactions of GdL(2) and GdL(3). The overall rates of dissociation of GdL(1), GdL(2), GdL(3) and Gd(DTPA)(2-) through H(+) (pH 7.4), Cu(2+) (1 x 10(-6) M) and Zn(2+) (1 x 10(-5) M)-assisted reactions are surprisingly very similar. Replacement of one or two carboxylates with amide groups results in significantly decreased stability constants, but has practically no effect on the kinetic stability of the Gd(3+) complexes, indicating the lower reactivity of the amide groups with Cu(2+) and Zn(2+).  相似文献   

13.
Copper(II) complexes of the 1-17 (MDVFMKGLSKAKEGVVA-NH(2)), 1-28 (MDVFMKGLSKAKEGVVAAAEKTKQGVAE-NH(2)), 1-39 (MDVFMKGLSKAKEGVVAAAEKTKQGVAEAPGKTKEGVLY-NH(2)) and 1-39 (A30P) fragments of alpha-synuclein were studied by potentiometric, UV-Vis (UV-visible), CD (circular dichroism) and EPR (electron paramagnetic resonance) spectroscopic methods to determine the stoichiometry, stability constants and coordination modes of the complexes formed. The beta-carboxylate group of Asp residue in second position of the peptide chain coordinates strongly to Cu(II) ion over the pH range 4-9.5 to give unusually stable 2N complex with {NH(2), N(-), beta-COO(-), H(2)O} coordination mode. At pH above 7 the results suggest the formation of 2N, 3N, 4N complexes (in equatorial plane) and the involvement of the lateral NH(2) group of Lys residue in the axial coordination of Cu(II) ion. In CD spectra sigma (epsilon-NH(2)-Lys)-->Cu(II) charge transfer transition is observed. Addition of the 18-28 and 18-39 fragments to the 1-17 peptide does not change the coordination mode and the 1-39 fragment forms the Cu(II) complexes with higher stabilities compared to those of the 1-17, 1-28 and 1-39(A30P) fragments of alpha-synuclein.  相似文献   

14.
Several coordination compounds formed between Ni(II) or Cu(II) with ofloxacin have been synthesised and characterised. According to elemental chemical analysis and FT-IR spectroscopy data, direct reaction of Ni(II) and Cu(II) salts with ofloxacin leads to formation of precipitates for which mass spectrometry demonstrates their polymeric nature. However, crystalline [Cu(oflo)2(H2O)].2H2O is formed if the reaction is carried out in the presence of ammonia. This complex crystallises in the triclinic system, space group P-1 with a=9.2887(12), b=11.2376(14), c=17.874(2) A, alpha=92.12(3), beta=95.39(3), gamma=91.71(3) degrees and Z=2. The local geometry around the Cu(II) ion is a slightly distorted square base pyramid. Electronic spectra, magnetic susceptibility measurements and EPR spectra of the synthesised complexes indicate a tetragonal environment.  相似文献   

15.
S(IV) (SO(2),HSO(3)(-)andSO(3)(2-)) autoxidation catalyzed by Cu(II)/tetraglycine complexes in the presence of DNA or 2'-deoxyguanosine (dGuo) resulted in DNA strand breaks and formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. Ni(II), Co(II) or Mn(II) (1.0x10(-4)M) complexes had much smaller effects. Cu(II)/tetraglycine (1.0x10(-4)M) in the presence of Ni(II) or Mn(II) (10(-7)-10(-6)M) and S(IV) showed remarkable synergistic effect with these metal ions producing a higher yield of 8-oxodGuo. Oxidation of dGuo and DNA damage were attributed to oxysulfur radicals formed as intermediates in S(IV) autoxidation catalyzed by transition metal ions. SO*(3)(-) and HO* radicals were detected by EPR-spin trapping experiments with DMPO (5,5-dimethyl-1-pyrroline-N-oxide).  相似文献   

16.
Copper(I)/(II) complexes with the ligand 2-aminoethyl(2-pyridylmethyl)1,2-ethanediamine (apme, abbreviated as PDT in the literature as well) were prepared and characterized. Crystal structures of the copper(I) complexes, [Cu2(apme)2]X2 (1, 2; X = ClO4, CF3SO3), showed that they are dinuclear, in contrast to the trigonal bipyramidal copper(II) complexes [Cu(apme)Cl]BPh4 (3) and [Cu(apme)(DMF)](BPh4)2 (4). 1 and 2 could be investigated in solution by NMR spectroscopy and 3 and 4 by cyclovoltammetry. From the results of these studies it is clear that in solution equilibria between the dinuclear complexes 1/2 and another species exist, most likely the monomeric [Cu(apme)CH3CN]+. Time-resolved UV/vis spectra at low temperatures allowed the spectroscopic detection of dioxygen adduct complexes as reactive intermediates during the oxidation of 1/2 with dioxygen that seem to play an important role in copper enzymes such as peptidylglycine--hydroxylating monooxygenase (PHM).  相似文献   

17.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

18.
Cu in blood has been believed to transport into cell via albumin and some amino acids. To shed light on the Cu transport process we studied the reaction of the Cu(II)-peptide with the amino acid by absorption and CD spectra. Albumin mimic peptides GlyGly-L-HisGly (GGHG) and penta-Gly(G5) formed stable 4N coordinated Cu(II) complexes, but in the reaction with histidine (His) and penicillamine (Pes) the ternary Cu(II) complex formations were observed different by the kinetic study. Cu(II)-G5 complexes reacted with Pes to form the ternary complex Cu(H(-1)G5)(Pes(-)) which was subsequently transformed to the binary complex Cu(Pes(-))(2). In the system with GGHG the Cu(II) was also transported from GGHG to Pes, but the ternary Cu(H(-1)GGHG)(Pes(-)) complex as the intermediate was detected a trace. The ternary complex would be spontaneously transformed to Cu(Pes(-))(2) upon forming, because the rate constant of the ternary complex formation k(1+)= approximately 2M(-1)s(-1) was less than k(2+)= approximately 5 x 10(2)M(-1)s(-1) for the Cu(Pes(-))(2) formation at physiological pH. In the Cu(II)-GGHG-His system the ternary Cu(H(-1)GGHG)(His) complex was also hardly identified because the formation constant K(1) and k(1+) were very small and the equilibrium existed between Cu(H(-2)GGHG) and Cu(His)(2) and its overall equilibrium constant beta(2) for Cu(His)(2) was very small to be 1.00+/-0.05 M(-1) at pH 9.0. These results indicated that the ternary complex is formed in the Cu transport process from the albumin to the amino acid, but His imidazole nitrogen in the fourth-binding site of Cu(II) strongly resists the replacement by the incoming ligand.  相似文献   

19.
cis,cis-1,3,5-Triaminocyclohexane (c-TACH), its N-alkyl-derivatives (alkyl = methyl, ethyl), and trans,cis-1,3,5-triaminocyclohexane (t-TACH) were prepared, and speciation and DNA cleaving property of Cu(II) complexes of these ligands were investigated. All of the complexes efficiently promote the hydrolytic cleavage of supercoiled plasmid DNA under physiological conditions without further additives. The DNA cleavage rate (V(obs)) trend at pH values between 8 and 9 is N-Me(3) = N-Et(1) < t-TACH < c-TACH < N-Et(2) < N-Et(3). At pH 7, the trend is c-TACH < N-Et(3) = N-Et(2) < N-Et(1) < N-Me(3) < t-TACH. The cleavage rate constants at 35 degrees C, for the c-TACH complex are 3 x 10(-1) h(-1) at pH 8.1 and 2 x 10(-1) h(-1) at pH 7.0 ([DNA] = 7 microM, [Cu(II)-complex] = 105 microM). The hydrolytically active species at pH > 8 is CuL(H(2)O)(OH)(+) in which L coordinates to Cu(II) as a tridentate ligand for all complexes except for t-TACH. The hydrolytically active species at pH 7 is CuLH(H(2)O)(3)(3+) or CuLH(H(2)O)(4)(3+) in which LH coordinates as bidentate ligand. DNA-binding constants of c-TACH and t-TACH complexes are presented and the effects of N-alkyl and ammonium groups are discussed in light of the proposed reaction mechanism.  相似文献   

20.
In order to estimate the impact of the low-molecular-mass (l.m.m.) VO(IV) binders of blood serum on the potentially insulin-enhancing compound VO(HPO)(2) (HPO, 2-hydroxypyridine-N-oxide): and VO(MPO)(2) (MPO, 2-mercaptopyridine-N-oxide), the speciation in the binary system VO(IV)-HPO and VO(IV)-MPO and in the ternary systems VO(IV)-HPO(MPO)-ligand B (B=oxalate, lactate, citrate or phosphate) was studied by pH-potentiometry. The stability constants of the complexes formed were determined in aqueous solution at I=0.2 M (KCl) and T=25 degrees C. The most probable binding modes of the complexes were determined by EPR method. The pyridine-N-oxides were found to form very stable bis complexes, which are predominant in the pH range 2-7. The results in the ternary systems demonstrate that only the citrate is a strong enough VO(IV) binder to compete with the carrier ligands. The binding ability of the high-molecular-mass (h.m.m.) serum proteins albumin and transferrin were also assessed and transferrin was found to be an efficient binder molecule. The actual solution state of these compounds in blood serum is compared with that of other insulin-mimic VO(IV) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号