首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paracrinology of growth regulation   总被引:1,自引:0,他引:1  
Embryonic and fetal growth is dependent on genetic factors and epigenetic factors such as peptide growth factors. We describe here the interactions of several peptide growth factors during the growth and function of two cell types, growth plate chondrocytes from the ovine fetus and astroglial cells from the newborn rat cerebral cortex. Isolated chondrocytes released two endogenous growth factors, basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF II). Although the latter was released in greater abundance, as detected by radioimmunoassay, exogenous bFGF was more than a thousand fold more active as a mitogen. Insulin was also able to increase chondrocyte replication at physiological concentrations, and bFGF, insulin and IGFs were additive in their effects on DNA and protein synthesis. Transforming growth factor beta (TGF beta), which is abundant in bone, had little effect on chondrocyte DNA or total protein synthesis alone, but blocked the stimulatory actions of insulin and IGFs on these parameters. However, TGF beta when alone or in combination caused an increase in the collagen: non collagenous protein ratio of new proteins synthesized by chondrocytes. Adult rat brain is a rich source of IGF II, and both IGF I and II are present during neurogenesis and gliagenesis in the fetal and neonatal rat respectively. We have cultured astroglial cells isolated from neonatal rat cerebral cortex to examine the production and interaction of peptide growth factors during their growth. Isolated astroglial cells contained mRNAs encoding both IGF I and II but abundance was not regulated by other hormones or growth factors. Using affinity cross-linking we found that cultured cells also released two species of IGF binding protein (IGF-BP) of 33 kDa and 38 kDa. Northern blot analysis using homologous cDNA probes showed that astroglial cells expressed IGF-BP2 and BP3, but little BP1. Both IGF I and II were mitogenic for astroglial cells, as was insulin at physiologic concentrations. Exogenous IGF-BP2 was able to modulate the mitogenic actions of exogenous IGF I. These two very different cell models show many similarities of endogenous growth control. Both release IGFs and IGF-BPs which regulate mitogenic rate. In addition, in both insulin functions as a growth factor at physiologic concentrations. These findings suggest common principles governing embryonic and fetal growth and development. Studies have shown that fetal and neonatal growth is independent of regulation by classic hormones (e.g. growth hormones) synthesized by the mother or the fetus. It is believed that embryonic and fetal growth is controlled by two major mechanisms, namely, (i) the genetic factors as determined by the embryonic and fetal genome, and (ii) the epigenetic and environmental factors that alter the expression of the embryonic or fetal genome.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Three N-glycosylated carrier proteins (CP) for insulin-like growth factors (apparent molecular weights 30-32, 42 and 45 kDa) were isolated from adult rat serum. They share the same amino terminus (up to amino acid 31) and are constituents of the growth hormone-dependent native 150-200 kDa IGF carrier complex. Residues 12-31 display 60 and 50% sequence homology, respectively, to residues 2-21 of fetal rat and to residues 4-22 of a human amniotic fluid IGF carrier protein. No homology exists with the type I or II IGF receptors. Adult rat serum also contains a fourth IGF CP (24 kDa) whose 9 NH2-terminal amino acids are identical to those of the fetal form. Our findings suggest that the three N-glycosylated components originate from the same IGF carrier protein (adult form) and that the 24 kDa protein is a separate (fetal) species.  相似文献   

3.
Receptor-mediated endocytosis may represent an important mechanism whereby peptide hormones exert their biological effects. The ability of recombinant insulin-like growth factor (IGF)-I to be internalized by cultured cells was evaluated in BRL-3A2 cells, a rat liver-derived cell line which lacks insulin receptors. Since recombinant IGF-I does not bind to the Type II IGF receptor, all specific binding of 125I-IGF-I in BRL-3A2 cells represents binding to the Type I receptor. Exposure of BRL-3A2 cells to IGF-I resulted in a rapid 50% downregulation of Type I IGF receptors. Only one-half of these binding sites were sensitive to treatment with trypsin, a phenomenon which indicates that the peptide and its receptor were internalized after the cells were exposed to IGF-I. In conclusion, these experiments demonstrate that IGF-I can be internalized by cultured cells via the Type I IGF receptor, and suggest that IGF hormone action may be exerted by receptor-mediated endocytosis.  相似文献   

4.
UMR106 cells, a rat osteosarcoma derived clonal line, secreted insulin-like growth factors (IGF) in vitro. The IGF-II levels corrected for the cell numbers were 7-8 times higher than the IGF-I levels in the medium. Both growth factors were higher by 4-5 fold in medium conditioned by rapidly growing cells than in medium conditioned by confluent cells. The addition of 17-beta-estradiol (E) to the culture medium was associated with a statistically significant increase in the IGF concentrations. This increment was metabolite specific, not occurring with 17-alpha-E, the inactive epimer of E. 1,25(OH)2D3 also increased the IGF-I concentration but prior treatment with E blocked the response to 1,25(OH)2D3, demonstrating antagonistic actions of these two hormones on IGF secretion by osteoblast-like cells.  相似文献   

5.
Insulin and parathyroid hormone (PTH) regulate glucose metabolism in bone cells. In order to differentiate between the effects of these hormones and to compare the potency of insulin with that of insulin-like growth factor (IGF) I, we treated rat bone-derived osteoblastic (PyMS) cells for different time periods and at different concentrations with insulin, IGF I, or PTH, and measured [1-(14)C]-2-deoxy-D-glucose (2DG) uptake and incorporation of D-[U-(14)C] glucose into glycogen. 2DG uptake was Na-independent with an apparent affinity constant (K (M)) of ~2 mmol/l. Expression of the high affinity glucose transporters (GLUT), GLUT1 and GLUT3 but not of GLUT4, was found by Northern and Western analysis. Similar to the findings with primary rat osteoblasts, but distinct from those in rat fibroblasts, 2DG uptake and glycogen synthesis were increased in this cell line after exposure to low concentrations (0.1 nmol/l and above) of PTH. IGF I at low doses (0.3 nmol/l and above) or insulin at higher doses (1 nmol/l and above) stimulated 2DG uptake and [(3)H] thymidine incorporation into DNA. 2DG transport was enhanced already after 30 min of IGF I treatment whereas the effect of PTH became significant after 6 h. It is concluded that IGF I rather than insulin may be a physiological regulator of 2DG transport and glycogen synthesis in osteoblasts.  相似文献   

6.
Somatomedins-insulin-like growth factors (SM/IGF) are growth hormone (GH) dependent serum growth factors. There is some evidence that IGF inhibit GH release (negative feedback) in 3- to 24-h incubations of cultured rat adenohypophysial cells. We have used acutely dispersed noncultured rat adenohypophysial cells to study the dynamics of IGF on GH secretion. In this system both IGF-I and IGF-II (100 ng/mL) slightly, but significantly, decrease the cumulative GH released by human pancreas growth hormone releasing factor 1-40 (GRF) and the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine. The inhibition is small (16%) and usually not statistically significant until 2 h of incubation. The inhibition with IGF is additive to that produced with low concentrations of somatostatin. The IGF also significantly decrease the rate of GH release in all time periods tested (0-1, 1-2, 2-3 h). In addition, the IGF decrease the quantity of [14C]leucine protein eluted at the position of labelled rat GH on Sephadex G75, which would include newly synthesized GH extracted from the cells. Thus we conclude that the decreased GH released may be due to an effect of IGF on both rate of release and on GH synthesis.  相似文献   

7.
C Schmid  J Zapf  E R Froesch 《FEBS letters》1989,244(2):328-332
A bone-derived rat cell line, PyMS, releases IGF I and IGF carrier proteins which are similar to those found in rat serum. Western blot analysis of culture media conditioned by hormone-treated cells shows that growth hormone and IGF I stimulate and cortisol inhibits production of IGF carrier proteins in vitro. A glycosylated carrier protein species of 49-42 kDa is closely related to the subunits of the growth hormone-dependent carrier protein complex found in rat serum. In addition, rhIGF I rapidly induces a 32 kDa, non-glycosylated IGF-binding protein whose accumulation is markedly increased by cortisol.  相似文献   

8.
Intercropping of companion plants (CPs) that release distinct volatile compounds with horticultural crops has been proposed to improve pest management. Although CP extracts or essential oils have been reported to be efficient in disturbing the settling of insects such as aphids, the effect of using actual CPs remains relatively unknown. Our aim was to screen odorous CP species for their effect on the performance of green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), when released on adjacent pepper plants. Intercropping was tested in growth chambers using potted plants to avoid root interactions and homogenise the abiotic environment of CPs. Our results indicated that eight CP species—rosemary, African marigold, French marigold, geranium, lavender, basil, chives, and pot marigold—affected aphid performance by reducing the reproductive performance and/or settlement of females. Rosemary followed by African and French marigold was associated with the largest reduction in adult female and nymph number. Chemical analyses indicated that rosemary and French marigold emit specific volatiles. In contrast, four CP species (false yellowhead, thyme, savoury, and peppermint) were not associated with a significant change in aphid performance and emitted a lower diversity of volatiles. This screening of CPs under controlled conditions may be considered as a first step towards the identification of volatiles emitted by actual plants that can affect aphid performance and help the choice of CPs to optimise intercropping strategies.  相似文献   

9.
Hepatocytes were isolated by gentle collagenase digestion of liver fragments from human fetuses of 8-16 weeks gestation obtained following prostaglandin-induced pregnancy terminations. They were maintained on collagen-coated tissue culture dishes in selective arginine-free medium for up to 72 hr, and the action of hormones and growth factors on DNA synthesis was studied by autoradiography following incubation with 3H-thymidine. The labeling index of hepatocytes was consistently enhanced by 25-250 ng/ml human placental lactogen (HPL), 25-250 ng/ml human growth hormone (HGH), 10-50 ng/ml insulin-like growth factor I/somatomedin-C (IGF I/Sm-C), and 10% dialyzed fetal calf serum, reaching a maximum of three- to four-fold greater than in basal medium alone. Under basal conditions, 30% of hepatocytes stained positively for the presence of IGF peptides using a monoclonal antibody raised against purified human IGF I/Sm-C. Although this proportion did not change following treatment with HGH and HPL, IGF I/Sm-C released by cells into culture medium was considerably increased in the presence of both hormones. Incubation with the SmC 1.2 monoclonal antibody abolished the increase in labeling index in response to IGF I/Sm-C and partially blocked the response to both HPL and HGH. These results indicate that both HPL and HGH stimulate DNA synthesis in human fetal hepatocytes and suggest that this effect is at least partly indirect through the release and paracrine action of IGF I/Sm-C.  相似文献   

10.
The insulin-like growth factors (IGF) or somatomedins (Sm) are a family of low molecular weight circulating growth factors which have a major, but not absolute, dependence on GH, and have been shown to stimulate body growth and skeletal metabolism in vivo. They are thus considered to mediate the effects of GH on skeletal growth. In humans, the family consists of two well-characterized forms--IGF-I or SmC (a basic peptide) and IGF-II (a "neutral" peptide)--as well as perhaps two less well characterized forms--SmA (a neutral peptide) and an acidic insulin-like activity (ILA pI 4.8). Similar IGF/Sm species have been found and well-characterized in rat serum. Some higher mol wt forms also exist in tissues and body fluids and may represent possible precursor forms. On the basis of in vitro, clinical and in vivo evidence it has been postulated that IGF-I is the primary growth factor in the adult, whilst IGF-II is probably a major foetal growth factor. In vitro the IGF/Sms have a variety of effects including (1) acute insulin-like metabolic actions, which are observed primarily in insulin target tissues and are initiated largely at insulin receptors, and (2) longer term effects, associated with cell growth and skeletal tissue metabolism, and which occur in traditionally non-insulin target tissues, primarily via IGF/Sm receptors. These observations, together with the circumstantial clinical evidence favouring a close association between IGF levels and growth status, clearly indicate a role for IGF/Sms in growth regulation. This concept is now fully supported by the demonstration that IGF-I infused into hypophysectomized (GH-deficient) rats results in increased growth and skeletal metabolism. The physiological regulation of the expression of net IGF activity in vivo is complex and is controlled by the following three determinants: the levels of IGFs, the levels of the specific carrier-proteins and the levels of IGF inhibitors. Both IGFs and their carrier-proteins are influenced by the GH status of the animal as well as by other hormones, nutritional status and chronic illness. Little is known yet about the control of the various IGF inhibitors that have been described. Of importance, however, is the general concept that normal growth is dependent on an adequate balance between all three determinants and that some regard must be had for the contribution of each in determining the overall potential for growth under given circumstances.  相似文献   

11.
During the last decade, involvement of growth hormone (GH), insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) in ovarian folliculogenesis has been extensively studied. This review provides an update on the GH, IGF system and their role in ovarian follicular development. In vitro studies and knockout experiments demonstrated an important role of GH in preantral follicle growth and differentiation through their binding with GH receptors, which are located both in the oocyte and follicular somatic tissues. Furthermore, GH stimulates the development of small antral follicles to gonadotrophin-dependent stages, as well as maturation of oocytes. With regard to the IGF system, IGF-I has no effects on primordial follicle development, but both IGF-I and IGF-II stimulate growth of secondary follicles. Depending on the species studies and method used, these proteins have been detected in oocytes and/or somatic cells. In antral follicles, these IGFs stimulate granulosa cell proliferation and steroidogenesis in most mammals. The bioavailability of IGFs is regulated by a family of intrafollicular expressed IGF binding proteins (IGFBPs). Facilitation of IGF can be increased through the activity of specific IGFBP proteases, which degrade the IGF/IGFBP complex, resulting in the production of IGFBP fragments and release of attached IGF.  相似文献   

12.
The chlorophenol chemicals (CPs) are a major class of widely distributed and frequently occurring persistent environmental pollutants. Pentachlorophenol (PCP) has been proposed to be procarcinogen in rodents and in possibly human beings. Human beings also easily expose to other chlorophenol chemicals, including 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,3,4-trichlorophenol (TCP), prompting this investigation of their comparative cytotoxic effects and cell death mechanisms, assayed in fibroblast L929 cells. The effective concentration for half-maximal response (EC50 values at 24 h for CP, DCP, TCP, and PCP are 2.18, 0.83, 0.46, and 0.11 mmol/L respectively and the EC50 values at 48 h are 1.18, 0.13, 0.08, and 0.06 mmol/L respectively by using 3-(4,5-dimethylthiazd-2-yl)-2,5-diphenyltentrazolium bromide (MTT) reduction assay. A clear structure-activity relationship was observed between toxicity of CPs and their octanol-water partition coefficients. The further studies indicate that CP, DCP, and TCP induce apoptosis in L929 cells in a concentration or time-dependent manner, but PCP mediates cell death more characteristic of necrosis than apoptosis. These results not only demonstrate that L929 cell growth inhibition bioassay may be useful to provide the comparative evaluation of toxicity of CPs in vitro, but also implicate that CP, DCP, TCP, in comparison with PCP, can induce L929 cell death by apoptosis, resulting in lower procarcinogensis, which may help to elucidate the molecular basis for the adverse health effects associated with CPs exposure.  相似文献   

13.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

14.
Insulin-like growth factors (IGFs) I and II are homologous peptides, which stimulate growth of several vertebrate tissues. Expression of IGF I and IGF II genes and production of IGFs have recently been demonstrated in rat and human brain. In search for the function of IGF I and IGF II in the central nervous system, we have studied IGF receptors in fetal and adult mammalian brain and growth effects of IGFs on primary cultures of fetal rat astrocytes. Two types of IGF receptor are present on adult rat brain cortical plasma membranes, on fetal rat astrocytes and on human glioma cells. Type I IGF receptor is composed of 2 types of subunits: alpha-subunits which bind IGF I and IGF II with high affinity and insulin weakly, and beta-subunits which show tyrosine kinase activity and autophosphorylation stimulated by IGF I and IGF II with almost similar potency. The molecular size of the type I IGF receptor alpha-subunit is larger in cultured fetal rat astrocytes and human glioma cells than in normal adult brain (Mr 130,000 versus 115,000), whereas the beta-subunit has the same electrophoretic mobility (Mr 94,000). The type II IGF receptor is a monomeric protein (Mr 250,000), which binds IGF II 5 times better than IGF I, and does not recognize insulin. The amounts of type II IGF receptor are significantly higher in fetal and malignant cells than in adult brain. Based on these findings we suggest that IGF receptors in brain undergo changes during fetal development and malignant transformation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Two types of receptor for insulin-like growth factors (IGFs) have been identified on adult rat and human brain plasma membranes by competitive binding assay, affinity labelling, receptor phosphorylation and interaction with antibodies to insulin receptors. The type I IGF receptor consists of two species of subunits: alpha-subunits (mol. wt. approximately 115 000), which bind IGF I and IGF II with almost equal affinity and beta-subunits (mol. wt. approximately 94 000), the phosphorylation of which is stimulated by IGFs. The alpha-subunits of type I IGF receptors in brain and other tissues differ significantly (mol. wt. approximately 115 000 versus 130 000), whereas the beta-subunits are identical (mol. wt. approximately 94 000). The type II IGF receptor in brain is a monomer (mol. wt. approximately 250 000) like that in other tissues. Two antibodies to insulin receptors, B2 and B9, interact with type I but not with type II IGF receptors. B2 is more potent than B9 in inhibiting IGF binding and in immunoprecipitating type I IGF receptors, in contrast to their almost equal effects on insulin receptors. This pattern is characteristic for IGF receptors in other cells. The presence of two types of IGF receptor in mammalian brain suggests a physiological role of IGFs in regulation of nerve cell function and growth. Since IGF II, but not IGF I, is present in human brain, we propose that IGF II interacts with both types of IGF receptor to induce its biological actions.  相似文献   

17.
Insulin-like growth factors (IGFs) I and II are two single-chain polypeptide hormones that are structurally related to each other and to proinsulin. Among the large number of growth factors involved in ovarian physiology, IGF-I and IGF-II are considered to be important progression factors for ovarian follicular development. To explore the ovarian expression of IGF-I, IGF-II and their receptor genes, a solution hybridization/RNase protection assay, was used. IGF-I mRNA was seen in the granulosa cells, and IGF-II mRNA in the theca-interstitial compartment. To study the hormonal regulation of the IGF-I and IGF-II gene, immature (21-day-old) hypohysectomized rats were treated with FSH (10 μg/day),GH (150 μg/day) and diethylstilbestrol (DES subcutaneous implant/5 days). Estrogen differentially regulated ovarian IGF-I and IGF-II gene expression. In concert with GH, estrogen up-regulated ovarian IGF-I mRNA, but significantly decreased hepatic IGF-I gene expression. Both IGF receptors (type I and type II) as well as the insulin receptor gene, were expressed in both ovarian cells. The expression of the type IIGF receptor gene (but not the type II IGF gene) was up-regulated by FSH and estrogen in vivo. In conclusion, these studies may serve to better understand the auto paracrine role of IGF, and their receptors in the pathophysiology of follicle recruitment, oocyte maturation and potentially embryo development.  相似文献   

18.
19.
Matrix metalloproteinases (MMP) are key enzymes involved in tissue remodeling. Within the ovary, they are believed to play a major role in ovulation, and have been linked to follicle atresia. To gain insight into the regulation of MMPs, we measured the effect of hormones and growth factors on MMP2 and MMP9 mRNA levels in non-luteinizing granulosa cells in serum-free culture. FSH and IGF1 both stimulated estradiol secretion and inhibited MMP2 and MMP9 mRNA abundance. In contrast, EGF and FGF2 both inhibited estradiol secretion but had no effect on MMP expression. At physiological doses, none of these hormones altered the proportion of dead cells. Although we cannot link MMP expression with apoptosis, the specific down regulation by the gonadotropic hormones FSH and IGF1 in vitro suggests that excess MMP2 and MMP9 expression is neither required nor desired for follicle development.  相似文献   

20.
Medium conditioned by BRL-3A cells, a known source of insulin-like growth factor II (IGF-II), induced phenotypic transformation (anchorage-independent proliferation) of mouse BALB/c 3T3 fibroblasts but not rat NRK-49F fibroblasts, in the presence of 10% calf serum. A specific radioreceptor assay and a bioassay indicated that BRL-3A conditioned medium contained 0.5-1 ng/ml of type beta transforming growth factor (beta TGF). Purified IGF-II and beta TGF acting together reconstituted the transforming activity of BRL-3A conditioned medium on BALB/c 3T3 cells. Insulin was 5-10% as potent as IGF-II in supporting the transforming action of beta TGF on BALB/c 3T3 cells. NRK-49F cells were phenotypically transformed by beta TGF in the presence of EGF and 10% calf serum as the sole source of IGFs. However, transformation of NRK-49F cells under these conditions was inhibited by addition of purified IGF-binding protein. Addition of an excess of IGF-II prevented the inhibitory action of IGF-binding protein. The different sensitivity of the two cell lines to IGFs was correlated with lower levels of type I IGF receptor and higher levels of type II IGF receptor in NRK-49F cells as compared with BALB/c 3T3 cells. The results suggest that cellular stimulation by IGFs is a prerequisite for transformation of rodent fibroblasts by beta TGF. We propose that transformation of fibroblasts by beta TGF requires concomitant stimulation by the set of growth factors that support normal cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号