首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper was to study the spatial distribution, abundance and composition of fish larvae in the northern Ionian Sea. Samples were collected to the 600 m depth with an electronic multinet BIONESS during the “INTERREG Italia-Grecia” oceanographic cruise carried out in March 2000 off the Apulian Italian coast. A total of 46 species of teleost early stages were collected, belonging to 38 genera and 22 families. Over 52% of the larvae identified were mesopelagic species, almost 27% were demersal and about 21% pelagic. A total of 307 myctophids, 69 clupeids and 61 gadid post-larvae dominated the community. Benthosema glaciale (mean 6.1 mm SL) was the most abundant species (21.6%), the most frequent in the samples (28.8%), and dominant in the whole study area (mean 1.4 ind/100 m3). Particular attention was given to the horizontal and vertical distribution and abundance of the three dominant post-larval species: Benthosema glaciale, Sprattus sprattus sprattus and Notoscopelus elongatus. The Pearson coefficient (R = 0.734) showed a high correlation between total zooplankton and fish larval assemblages in terms of spatial distribution abundance values. Regarding the vertical distribution of fish larvae, Sorensen’s index (S = 0.69) showed that fish larvae and total zooplankton abundance peaks co-occurred along the water column.  相似文献   

2.
The composition, abundance and vertical distribution of mesoplanktonic cnidarians collected along a transect across the Weddell Sea have been analysed. The transect was characterized by a thermocline, approximately between 200 and 100 m, which deepened significantly towards the shelf edges. In total, 10 species of medusae and 18 species of siphonophores were identified. The most abundant medusae were Pantachogon scotti (up to 11,671 specimens/1,000 m3) and Arctapodema ampla (up to 960 specimens/1000 m3). The most abundant siphonophores were Muggiaea bargmannae (up to 1,172 nectophores/1,000 m3) and Dimophyes arctica (up to 230 nectophores/1,000 m3). Five assemblages of planktonic cnidarians were distinguished: (a) epipelagic species located in and above the thermocline; (b) epi- and upper mesopelagic species located in, above and just below the thermocline; (c) epi- and mesopelagic species located in and below the thermocline; (d) mesopelagic species; (e) lower mesopelagic species. Differences in the depth distribution of the various species gave rise to a clear partitioning of the mesoplanktonic cnidarian population throughout the water column. This vertical partitioning was related to the existence of a thermocline, the structure of the water column and the vertical distribution of prey.  相似文献   

3.
During the austral summers of 2003 and 2006, two cruise were carried out in the Bellingshausen Sea and west off Antarctic Peninsula on board of RV Hespérides. Samples were collected at 26 stations with a multinet Macer-GIROQ sled. A total of 557 cumaceans belonging to 36 species of five families were collected. Nannastacidae was the most abundant and speciose family. Hemilamprops pellucidus and Cyclaspis gigas were the most frequently collected species (38.5% of sampling stations). Cumella asutralis reached the highest density (514.7 individuals/1,000 m2 at stn 7). Maximum species richness (S = 15) and diversity (H′ = 3.53) was observed at one of the deepest station. Positive correlations were found between the cumacean distribution and the organic content and percentage of coarse sand of the sediments. Predominance of Nannastacidae in front of other cumaceans could be explained by their type of feeding (i.e. predators or scavengers), which may be more successful in the deep seafloor of an oligotrophic sea such as studied herein. The presence in the deepest sampling sites of species shared with faunas of surrounding oceans suggests a link between these faunas and those of deep Antarctic waters.  相似文献   

4.
The taxonomic composition and vertical distribution of cyclopoid copepods, including very small species, in the central Red Sea were analyzed. Samples were taken in a multiple opening and closing net with 0.1 mm mesh size to a depth of 450 m. Most species belong to the genus Oncaea (13 identified and 6 unidentified forms). Nearly one half of these are smaller than 0.4 mm in length. Nine cyclopoid species and three groups of very similar species and forms of Oncaea predominate. In the upper 450 m of the water column, each of these species or groups account for more than 1 % of all cyclopoid specimens. In the epipelagic zone (0–100 m) Oithona simplex predominates, accounting for 20 % of the total. In the upper mesopelagic zone Paroithona sp. and one of the unidentified Oncaea forms are most numerous from 100 to 250 m, and two groups of Oncaea are most abundant from 250 to 450 m. The dominance of single species among cyclopoids is less pronounced than that reported for calanoids in the mesopelagic zone of the central Red Sea.  相似文献   

5.
The benthic fauna off the Victoria-Land-Coast, Ross Sea (Antarctica) was investigated during the 19th Italica expedition in February 2004. Samples were taken along a latitudinal transect from Cape Adare down to Terra Nova Bay at water depths ranging from 84 to 515 m. A Rauschert dredge was used at 18 stations to collect epi- and infaunal macrobenthos. 9,494 specimens of Isopoda were collected, representing 19 families. Desmosomatidae were the most abundant family (35,297 ind/1,000 m2), followed by Paramunnidae (23,973 ind/1,000 m2). Paramunnidae was the most frequent taxon and was collected at all stations, in contrast to the Desmosomatidae, which did not occur at any station off Cape Adare.  相似文献   

6.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

7.
Summary Micronekton and macrozooplankton assemblages (0–1000 m) were sampled from the open ocean in the vicinity of marginal ice zones in the southern Scotia and western Weddell Seas using midwater trawls. Small regional differences in species composition were found in the differing hydrographic settings with the Scotia Sea being slightly more diverse. Most species exhibited broad vertical ranges with no distinct pattern of vertical movement. Exceptions were mesopelagic fish and Salpa thompsoni which undertook diel vertical migrations. Biomass was high (2.4–3.1 g DW/m2), comparable to Pacific subarctic waters. Euphausia superba and Salpa tompsoni were the numerical and biomass dominants, representing over 50% of the total numbers and standing stocks. In terms of biomass, euphausiids were the most important group at shallow depths (0–200 m) but were surpassed by salps in the Scotia Sea and mesopelagic fish in the Weddell Sea when all depths down to 1000 m were considered. Pelagic fish biomass (3.3–4.4 g WW/m2) greatly exceeded published estimates for birds (0.025–0.070 g WW/m2), seals (0.068–0.089 g WW/m2) and whales (0.167 to 0.399 g WW/m2), making mesopelagic fish the most prevalent krill predators in the Antarctic oceanic system.  相似文献   

8.
Six moorings were deployed at different locations in the deep submarine canyons along the south–west margin of Crete, providing a total of eight sediment-trap time series from June 2005 to May 2006. Within this dataset, we analyzed the record from intact coccospheres, which represent the signal of export production from the coccolithophore community. The most abundant species at all stations during the whole investigated period were E. huxleyi and A. robusta, followed by S. pulchra HET, G. flabellatus, H. carteri, F. profunda, S. pulchra HOL oblonga, while the rest of the species represented ≤ 1% of the assemblage. Overall the assemblage composition was comparable at all stations, with slight variations mostly related to the different preservation of coccosphere integrity at the different collection depths. The consistent pattern of seasonal variation in species distribution and total coccolithophore export allowed us to define the occurrence of three main periods: a) March to June, with high overall coccosphere flux (up to 4.3 × 105–3.4 × 106 coccospheres m− 2 day− 1), increased abundance of E. huxleyi and subordinate H. carteri s.s., Umbilicosphaera spp. and S. pulchra; b) June to November, with high but gradually decreasing total coccosphere flux (up to 7 × 105–1.4 × 106 coccospheres m− 2 day− 1) and high relative abundance of the deep photic zone species A. robusta, F. profunda, G. flabellatus as well as S. pulchra and Coronosphaera spp., R. clavigera, U. tenuis, D. tubifera and holococcolithophores; c) November to February, with low overall export fluxes (3.5–9 × 104 coccospheres m− 2 day− 1) and high relative abundance of A. robusta, S. pulchra and Syracosphaera spp. These three periods correspond to the seasonal changes in sea surface temperature, surface mixed layer depth and rainfall and are associated with varying total surface primary production, as detected through remote sensing in the surface waters.  相似文献   

9.
This study enlarge the knowledge on species composition, distribution and community structure of pelagic polychaetes on the basis of finely stratified spatial sampling representing austral summer conditions in the Strait of Magellan. Zooplankton samples were collected in late austral summer 1995. A total of 56,489 pelagic polychaete specimens were collected. Eight holopelagic polychaete taxa were recorded in addition to Spionidae and Terebellidae larvae and reproductive stolons of Autolytinae. Pelagobia longicirrata (Lopadorhynchidae) was the most abundant species, representing about 96 % (54,092 specimens, 184.6 ind. 100 m?3) of all individuals, followed by Tomopteris planktonis (Tomopteridae) at 3 % (1,725 specimens, 5.9 ind. 100 m?3). The longest measured individuals belonged to T. planktonis, which also showed the largest size range, whereas the smallest individuals belonged to P. longicirrata. Spatial distribution of polychaetes in terms of abundance was not related to bottom depth, but rather the number of taxa was lower in the central part of the Strait. P. longicirrata and T. planktonis were negatively related to chlorophyll a. In addition, the first was negatively related to temperature instead the second was positively affected by salinity. Polychaetes were widely distributed in both epi- and mesopelagic realms, whereas they were almost absent above 80 m depth. Both of the most abundant species were concentrated in the deepest layers sampled (below 100 m) throughout day and night hours without showing any specific migratory behavior.  相似文献   

10.
Seasonal changes in the microphytoplankton assemblages were examined in the coastal zone of Bozcaada Island with regard to some major physical and chemical variables. Samples were collected from May 2000 to December 2001 at four stations. A total of 108 dinoflagellates, 102 diatoms, 1 chrysophycean, 3 dictyochophycean, and 1 prasinophycean species were identified and quantified during the study period. Diatoms and dinoflagellates were the most important in terms of species number and abundance. The maximum values of total microphytoplankton were observed at 0.5 m depth (46.2 × 103 cells l−1 at st. 3) in May as this was the month when the diatom Pseudo-nitzschia pungens bloomed. Chlorophyll (chl) a concentration ranged between 0.08 (August) and 0.78 μg l−1 (February). May was another important month in which chlorophyll a increased (0.41–0.47 μg l−1). Species diversity values (Hlog2) ranged from 1.66 bits (June, 20 m) to 4.11 bits (November, 0.5 m). The increase was attributed to a more balanced distribution of abundance among species. The amounts of nitrate + nitrite (0.6−3.7 μg-at N l−1), phosphate (0.2−0.6 μg-at P l−1) and silicate (0.7−2.5 μg-at Si l−1) were recorded on each sampling occasion. Nutrient concentrations and chl a values of the research area were found to be poorer than those of the many other coastal areas in the northeastern Mediterranean. The mean atomic ratio of nitrogen to phosphorus varied from 1.3 (June) to 12.9 (February). This ratio was lower than the Redfield ratio of 16 for ocean phytoplankton, and phytoplankton was potentially limited by nitrogen for most of the months. The result of this study confirms and emphasizes the oligotrophic nature of the eastern Mediterranean.  相似文献   

11.
Over the past decades, coralline algae have increasingly been used as archives of palaeoclimate information due to their seasonal growth bands and their vast distribution from high latitudes to the tropics. Traditionally, these reconstructions have been performed mainly on high latitude species, limiting the geographical area of their potential use. Here we assess the use of temperate crustose fossil coralline algae from shallow water habitats for palaeoenvironmental reconstruction to generate records of past climate change. We determine the potential of three different species of coralline algae, Lithothamnion minervae, Lithophyllum stictaeforme and Mesophyllum philippii, with different growth patterns, as archives for pH (δ11B) and temperature (Mg/Ca) reconstruction in the Mediterranean Sea. Mg concentration is driven by temperature but modulated by growth rate, which is controlled by species-specific and intraspecific growth patterns. L. minervae is a good temperature recorder, showing a moderate warming trend in specimens from 11.37 cal ka BP (from 14.2 ± 0.4°C to 14.9 ± 0.15°C) to today. In contrast to Mg, all genera showed consistent values of boron isotopes (δ11B) suggesting a common control on boron incorporation. The recorded δ11B in modern and fossil coralline specimens is in agreement with literature data about early Holocene pH, opening new perspectives of coralline-based, high-resolution pH reconstructions in deep time.  相似文献   

12.
The mesopelagic fish community of the northern Scotia Sea was investigated during the austral autumn using multi-frequency acoustics, opening and closing nets and pelagic trawls fished from the surface to 1,000 m. The Family Myctophidae (15 species in 5 genera) dominated the ichthyofauna, with larval notothenids caught over the South Georgia shelf and bathylagids and stomiids abundant in deeper hauls. The biomass of myctophids was estimated to be 2.93 g wet weight 1,000 m−3, with Electrona carlsbergi, E. antarctica, Protomyctophum bolini, P. choriodon, Gymnoscopelus braueri, G. fraseri, G. nicholsi and Krefftichthys anderssoni, being the most abundant species. Analysis of community structure indicated a high level of depth stratification within the myctophids, with evidence of diurnal vertical migration in some, but not all, species. Length-frequencies of G. braueri, G. nicholsi, E. antarctica and K. anderssoni were multimodal, suggesting that all life stages may be present in the northern Scotia Sea. In contrast, P. choriodon, P. bolini, G. fraseri and E. carlsbergi had unimodal distributions despite having multi-year lifecycles, indicating that they probably migrate into the region from warmer areas to the north.  相似文献   

13.
This work investigates the spatial distribution and species composition of mesopelagic fish larvae and their relationship with the main oceanographic events in the area studied. Samples were collected during a hydrographic and ichthyoplanktonic survey carried out in the Strait of Sicily in July 2000. Sorting revealed that 1258 out of the 4098 fish larvae identified belonged to mesopelagic species; Cyclothone braueri(67.6% of the total), Electrona Risso(7.8%) and Myctophum punctatum(7.7%) were the most prevalent species, with 850, 97, and 98 individuals, respectively. The surface density patterns of mesopelagic fish larvae appear to be related to the hydrographic characteristics and structures determined by the surface circulation path.  相似文献   

14.
Although metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0–1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology‐based studies in the region (4,024 OTUs, 10‐fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic–upper mesopelagic depths (100–300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies. Four distinct depth‐stratified species assemblages were identified, with faunal transitions occurring at 100 m, 300 m and 500 m. Highest diversity occurred in the smallest zooplankton size fractions (0.2–0.5 mm), which had significantly lower % OTUs classified due to poor representation in reference databases, suggesting a deep reservoir of poorly understood diversity in the smallest metazoan animals. A diverse meroplankton assemblage also was detected (350 OTUs), including larvae of both shallow and deep living benthic species. Our results provide some of the first insights into the hidden diversity present in zooplankton assemblages in midwaters, and a molecular reappraisal of vertical gradients in species richness, depth distributions and community composition for the full zooplankton assemblage across the epipelagic, mesopelagic and upper bathypelagic zones.  相似文献   

15.
Norway maple (Acer platanoidesis) is invasive in a natural stand in suburban Ithaca, NY. To determine the understory pattern and consequences of a Norway maple invasion, I compared density and species richness under Norway maples and sugar maples (Acer saccharum). Mean sapling density was significantly lower (P<0.0027) under Norway maples (3.64/100 m2±1.6 SE) than under sugar maples (19.4/100 m2±4.4 SE). Mean sapling species richness was significantly lower (P<0.0018) under Norway maples (0.7/32 m2±0.18 SE) than under sugar maples (2.6/32 m2±0.48 SE). Likewise, Norway maple regeneration is more frequent under sugar maples than sugar maple regeneration: 57% of sugar maple plots had Norway maple saplings while 0% of Norway maple plots had sugar maple saplings. Two significant plot effects were found for presence–absence: Norway maple saplings grow under Norway maples with a significantly lower frequency (P<0.03) than under sugar maples; sugar maple saplings grow under Norway maples with a significantly lower frequency (P<0.000) than under sugar maples. Across the site, Norway maple saplings were the most abundant (29 saplings for 480 m2). The success of Norway maple regeneration and the reductions in total stem density beneath Norway maples is most likely the result of its strong competitive abilities, notably its high shade tolerance and abundant seed crops.  相似文献   

16.
Multiple opening-closing nets of 0.05 mm mesh size were employed to study the community structure and vertical distribution of microcopepods at selected stations in the Red Sea, Arabian Sea and Eastern Mediterranean Sea down to a maximum depth of 1850 m. Calanoids, cyclopoids (Oithona and Paroithona) and poecilostomatoids (mainly Oncaea) were the 3 most abundant orders. In the epipelagic zone (0–100 m), these orders occurred at similar abundance levels, whereas in the meso- and bathypelagic zones the poecilostomatoid genus Oncaea dominated numerically by about 60–80% of all copepodids.The species diversity of Oncaea in the Red Sea is compared with preliminary results from the two adjacent regions. In the deep Eastern Mediterranean Sea, the number of species appears to be similar to that in the deep Red Sea and low as compared to the deep Arabian Sea. In this latter area an extremely speciose Oncaea fauna was found at depth below the oxygen-minimum-zone (900–1850 m). The results are related to the differences in the hydrographic conditions of these 3 areas.  相似文献   

17.
Regional variations in mesozooplankton composition, abundance and biomass were studied during a cruise in August 2006 near Novaya Zemlya Archipelago (eastern Barents Sea) using Juday net hauls from the bottom (or 100 m depth) to the surface. A comparison with multiannual literature values revealed that the mean temperature and salinity in the south and centre of the study area were similar to typical values, while temperature in the north was significantly higher. A total of 36 species and higher taxa were identified. Mesozooplankton abundance and biomass varied from 47 to 851 ind m−3 and from 5 to 74 mg dry weight m−3, respectively. Copepods dominated the mesozooplankton community, reaching 73–98% and 61–97% of the total abundance and biomass. Calanus finmarchicus and Oithona similis were the most abundant species at all stations. The biodiversities (Shannon indices) of the mesozooplankton community varied between stations from 1.10 to 2.46 (estimated from species abundances) and from 0.19 to 1.92 (estimated from species biomasses), averaging 1.93 ± 0.127 and 1.34 ± 0.151, respectively. Three groups at the 48% level of dissimilarity of species abundance were delineated by cluster analyses. The clusters differed significantly with respect to temperature and salinity. The total mesozooplankton abundance and biomass as well as quantitative parameters of most common taxa scaled negatively with temperature.  相似文献   

18.
We conducted multinet sampling during winter and summer in the Southern Ocean (Atlantic sector) to investigate the effect of water mass, season and water depth on abundance and species composition of meso- and bathypelagic chaetognaths. Eukrohnia hamata (mean 115 ind. 1,000 m−3) and Sagitta marri (mean 51 ind. 1,000 m−3) were dominant, complemented by E. bathypelagica (mean 19 ind. 1,000 m−3) and E. bathyantarctica (mean 19 ind. 1,000 m−3) below 1,000 m. A further six species were identified, among them the rare bathypelagic species Heterokrohnia fragilis and the subtropical Eukrohnia macroneura that is new to the Antarctic. Water depth and season were the principal determinants of abundance and species composition patterns, indicating vertical seasonal migration and vertical segregation of species. The life cycles of E. hamata and S. marri were studied additionally. Their maturity stages were vertically segregated and prolonged reproductive periods are suggested for both species.  相似文献   

19.
  1. Assessing the quality of wetlands as refuelling areas for migrating waterbirds based on resource distribution patterns is challenging. Resources in wetlands can vary both horizontally and vertically and may be differentially available to different bird species at different times of the year. Therefore, the extent to which wetland quality can be generalised across seasons and for a diversity of birds remains unresolved.
  2. Spatiotemporal variation in abundance and quality of macrobenthos as food for migrating waders was studied in a set of wetland areas near a Mediterranean migration bottleneck in the Balkan peninsula, during both spring and autumn migration. Samples were subdivided into different depth layers to differentiate between parts of the sediment that are accessible to different groups of wader species. To quantify food availability and the resulting refuelling capacity in different wetland habitat types, abundance, wet weight, and lipid and protein content of invertebrate taxa were determined for each sample.
  3. Invertebrate food availability and quality were markedly higher in spring than in autumn. Given the higher abundance and protein and lipid content of prey in spring, the total energy that could be harvested in spring (3.81 ± 0.79 kJ/m2) was about 7 times higher than in autumn (0.56 ± 0.12 kJ/m2). Most prey were found in the top layer of the sediment (0–22 mm depth), but about a third of the total energy was present in the deepest soil layer that only longer-billed species could reach (55–200 mm depth). Higher quality prey items such as larger-bodied and heavier polychaetes and bivalves were found in the deeper sediment layers.
  4. For other taxa, there was no evident vertical pattern of increasing individual body size. Prey abundance differed between certain habitat types but, overall, food availability could not be linked to distinct habitats. In spring, redox potential tended to be higher, while pH, vegetation cover, conductivity, and temperature were lower than in autumn.
  5. Different wetland habitat classes used in a conservation framework may provide similar food resources for waders. As a result, linking food availability to habitat classifications is not straightforward. Furthermore, seasonal variation in wetland quality requires a re-evaluation of the importance of wetland areas during spring and autumn migration. Finally, nutritional analyses are essential for determining the capacity of wetlands to support refuelling by migratory waterbirds.
  相似文献   

20.
Morphology and morphometry of the sagittae otolith were studied in pelagic and mesopelagic fish. The shape, margins and rostrum of four groups of otoliths from several species were analyzed: group 1 (pelagic fish associated with the under ice cover N = 42), group 2 (pelagic fish associated with water offshore N = 9), group 3 (mesopelagic fish associated with extensive vertical migration N = 57) and group 4 (mesopelagic fish associated with short vertical migration N = 54). E (maximum width of the sagitta /maximum length of the sagitta %), R (rostrum length (RL)/maximum length of the sagitta %) and S (sulcus area (SS)/otolith area (OS) %) indexes were calculated for each species. Sagittae of pelagic groups (1 and 2) showed the smallest sagitta dimensions in relation to the total length of the fish, in this group the sagitta shape is variable. Sagittae of mesopelagic fish (groups 3 and 4) showed variable shape and edges. The shape in group 4 was polygonal and these species have more width than length. Statistical analysis showed significant differences in the E, R and S indexes. These results were compared with other 19 species, belonging to six families, taken from a publisher-edited literature. E, R and S-values could be used to characterize the sagittae of the Antarctic fish and could be considered as a useful tool for fish ecology studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号