首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) that has biocontrol activity against fungal plant pathogens and is a model for rhizosphere colonization. Here, we present its complete genome sequence, which shows that besides a core genome very similar to those of other strains sequenced within this species, F113 possesses a wide array of genes encoding specialized functions for thriving in the rhizosphere and interacting with eukaryotic organisms.  相似文献   

2.
Pseudomonas fluorescens F113 produces antifungal metabolites that protect the roots of sugarbeet from the fungus Pythium ultimum . The phytopathogen, in turn, has the ability to downregulate the expression of genes fundamental to the rhizosphere competence of the bacterial strain. This paper describes the characterization of two of these genes, which were isolated by screening a mini-Tn 5  :: lacZ mutant bank for differential expression of β-galactosidase in the presence of P. ultimum . In order to identify the genes affected in reporter mutants SF3 and SF5, the transposons and flanking regions were cloned. Sequence analysis of the regions flanking the transposons in SF3 revealed that mini-Tn 5  :: lacZ had inserted into a tRNAIle gene, which maps within a ribosomal RNA ( rrn ) operon. In SF5, the transposon inserted between the promoter of a second rrn operon and a gene encoding a 16S rRNA. Southern blot analysis demonstrated that there are five rrn operons in P. fluorescens F113 and that the transposons in SF3 and SF5 had inserted into two different operons. Further characterization of these mutants suggests that their reduced rhizosphere competence is not the result of reduced viability in the short term but may be accounted for partly by reduced growth rates under conditions that support rapid growth. Analysis of lacZ expression in the reporter mutants indicate that the marked rrn operons are regulated differently, suggesting different physiological roles.  相似文献   

3.
4.
Abstract The aim of this microcosm study was to determine influence of the antibiotic 2,4-diacetylphloroglucinol (DAPG) on the effect of wild-type and functionally modified Pseudomonas fluorescens F113 strains in a sandy loam soil of pH 5.4 planted with pea (Pisum sativum var Montana). The functional modification of strain F113 was a repressed production of DAPG, useful in plant disease control, creating the DAPG negative strain F113 G22; both were marked with a lacZY gene cassette. Lowering the soil pH to 4.4 significantly reduced the plant shoot and root weights and the root length, whereas the bacterial inocula had no significant effect. Both inocula significantly reduced the shoot/root ratio at pH 5.4, but this effect was not evident at the lowered or elevated (6.4) pH levels. The decrease in pH significantly increased the fungal and yeast colony-forming units from the rhizosphere (root extract), but did not affect the total bacterial c.f.u.'s. Inoculatioin with strain F113 in the pH 4.4 soil resulted in a significantly greater total bacterial population. The fungal and yeast c.f.u.'s were not significantly affected by the inocula at any pH studied. Increasing the pH significantly increased the indigenous Pseudomonas population in comparison to the reduced pH treatment and significantly increased both the introduced and total Pseudomonas populations. The antibiotic producing strain significantly reduced the total bacterial population and the NAGase activity (related to fungal activity) at pH 6.4 where the inocula population was the greatest. Alkaline phosphatase, phosphodiesterase, aryl sulfatase, β-glucosidase, alkaline β-galactosidase, and NAGase activities significantly increased with increasing in pH. The F113 inocula reduced the acid phosphatase activity at pH 5.4 and increased the acid β-galactosidase activity over all the pH treatments. The results presented illustrate the variation in impact with soil pH, with implications for variability in efficacy of Pseudomonas fluorescens biocontrol agents with soil pH. Received: 26 June 1998; Accepted: 1 February 1999  相似文献   

5.
The aim of this work was to determine the effect of wild type and functionally modified Pseudomonas fluorescens strains on C fractions in the rhizosphere of pea. The lac ZY marked F113 strain produces the antibiotic 2,4 diacetylphloroglucinol (DAPG) useful in plant disease control. The modified strain of F113 was represented in production of DAPG, creating the DAPG negative strain F113 G22. The F113 treatment resulted in a significantly lower shoot/root ratio. The F113 G22 treatment had a significantly greater indigenous and total fluorescent Pseudomonas population than the control and F113 (DAPG+) treatment. Both strains significantly increased the water soluble carbohydrates and the total water soluble carbon in the pea rhizosphere soil. Strain F113 significantly increased the soil protein content relative to the control, but not in relation to the F113 G22 treatment. The F113 treatment had a significantly greater organic acid content than the control and F113 G22 treatments, whilst the F113 G22 treatment was also significantly greater than the control. Both inocula resulted in significantly lower phosphate contents than the control. The F113 inocula significantly increased alkaline phosphatase, sulphatase and urease activities, and reduced β glucosidase activities indicating increased carbon availability. Both inocula increased C availability ; however, antibiotic production by strain F113 reduced the utilisation of organic acids released from the plant resulting in differing effects of the two strains on nutrient availability, plant growth, soil enzyme activities and Pseudomonas populations.  相似文献   

6.
7.
Delany  I.R.  Walsh  U.F.  Ross  I.  Fenton  A.M.  Corkery  D.M.  O'Gara  F. 《Plant and Soil》2001,232(1-2):195-205
Pseudomonas fluorescens F113 is an effective biocontrol agent against Pythium ultimum, the causative agent of damping-off of sugarbeet seedlings. Biocontrol is mediated via the production of the anti-fungal metabolite 2,4-diacetylphloroglucinol (Phl). A genetic approach was used to further enhance the biocontrol ability of F113. Two genetically modified (GM) strains, P. fluorescens F113Rif (pCU8.3) and P. fluorescens F113Rif (pCUP9), were developed for enhanced Phl production and assessed for biocontrol efficacy and impact on sugarbeet in microcosm experiments. The multicopy plasmid pCU8.3 contains the biosynthetic genes (phlA, C, B and D) and the putative permease gene (phlE) of F113 cloned into the rhizosphere stable plasmid pME6010, independent of external promoters. The plasmid pCUP9 consists of the Phl biosynthetic genes cloned downstream of the constitutive Plac promoter in pBBR1MCS. Introduction of pCU8.3 and pCUP9 into P. fluorescens F113 significantly altered the kinetics of Phl biosynthesis when grown in SA medium. A significant and substantial increase in Phl production by the GM strains was observed in the early logarithmic phase and stationary phase of growth compared with the wild-type strain. In microcosm, the two Phl overproducing strains proved to be as effective at controlling damping-off disease as the proprietary fungicide treatment, indicating the potential of genetic modification for plant disease control.  相似文献   

8.
Cells of Pseudomonas fluorescens F113 LacZY were encapsulated in alginate and their survival and ability to colonise sugar beet were evaluated. To assess survival, the formulation, composed of dry alginate microbeads of 300- to 700-μm diameter, was stored 1 year at 28±2 and 4±2°C and then tested against pathogenic fungi Pythium ultimum and Rhizoctonia solani in in vitro inhibition experiments. The same material was also used as inoculant for protection of sugar beet against Py. ultimum in microcosm experiments. The results obtained indicated that, although drying alginate beads resulted in a significant reduction of bacterial viability, the use of microbeads enabled a satisfactory level of root colonisation and protection, at least under microcosm conditions. The capability of the encapsulated cells to produce the antifungal metabolite 2,4-diacetylphloroglucinol (Phl) was not significantly affected by 12 months storage. Journal of Industrial Microbiology & Biotechnology (2001) 27, 337–342. Received 07 September 2000/ Accepted in revised form 08 May 2001  相似文献   

9.
Pseudomonas fluorescens F113lacZY and modified strains carrying different function modifications were assessed for their impact in the rhizosphere of pea. Strain F113lacZY naturally produces the anti-fungal metabolite 2,4-diacetylphloroglucinol (Phl) useful in plant disease control. The first modified strain of F113 was repressed in production of Phl, creating the Phl negative strain F113G22. The second was a plasmid based overproducer of Phl (F113Rif (pCUGP)). Both the F113lacZY and the F113Rif (pCUGP) strains increased the rhizoplane fungal populations, whereas the same strains reduced the rhizosphere soil fungal populations with respect to the control. Similar results were found with the rhizoplane and rhizosphere soil bacterial populations. The F113G22 treatment resulted in a significantly greater indigenous fluorescent Pseudomonas population than the F113lacZY and F113Rif (pCUGP) treatments and a greater total Pseudomonas population than the control, F113lacZY, and F113Rif (pCUGP) treatments. Overproduction of Phl did not affect the establishment of the introduced Pseudomonas population. None of the inocula displaced the indigenous populations, but the F113G22 inocula had an additive effect on the total Pseudomonas population. P (phosphatase), S (sulphatase), and N (urease) cycle enzyme activities were increased while C (glucosidase, NAGase) cycle activities were decreased by the F113lacZY and F113Rif (pCUGP) treatments, suggesting C leakage from the roots. Overall, most effects of inoculation compared to the wild type were found with the non-Phl-producing strain. Overproduction of Phl had little environmental effect in relation to wild-type inocula.  相似文献   

10.
Sugarbeet seeds used by farmers are often pelleted using an EBTM-based mix. During the pelleting process, the seeds are dried immediately after application of the mix. In this work, the effects of inoculum preparation and formulation on survival and biocontrol efficacy of Pseudomonas fluorescens F113Rif were investigated using a 1:1 EBTM/vermiculite mix and sugarbeet seeds pelleted with this material. Growing F113Rif for 3 d (28 °C) within the EBTM/vermiculite mix amended with nutrients (sucrose asparagine broth), instead of adding the cells to the unamended mix immediately before drying the mix or the pelleted sugarbeet seeds, resulted in improved survival of the strain in the mix or on the seeds, respectively, during subsequent storage. A slower drying (20 h instead of 3 h) of the F113Rif-inoculated EBTM/vermiculite mix to 11% w/w water content enhanced strain survival in the mix during storage, but the drying conditions studied had no effect on inoculant survival on the seed during storage when pelleted seeds were dried to 10% w/w water content. Biological control of damping-off disease of sugarbeet (caused by Pythium spp.) in soil microcosms was achieved when F113Rif was inoculated in the unamended mix 3 d before pelleting the seeds, but not when nutrient-amended mix was used. Inoculum preparation and drying of the formulation are key factors to consider when optimizing the use of a commercial EBTM/vermiculite seed formulation for delivery of a biocontrol Pseudomonas inoculant.  相似文献   

11.
12.
13.
AIMS: The present study was designed to evaluate the stable insertion and expression of an arsenic resistance operon in the rhizosphere competent, PCB degrading strain Pseudomonas fluorescens F113rifPCB (F113rifPCB) and to investigate its ability to protect plants from arsenic. METHODS AND RESULTS: Introduction of the clone pUM3 (arsRDABC) into F113rifPCB was carried out by triparental conjugation. The resultant arsenic resistant strain was screened through a number of phenotypic tests including ability to grow on biphenyl, its rhizosphere competence and plant protection potential. CONCLUSIONS: Insertion and expression of arsenic resistant operon arsRDABC (from plasmid R773) into F113rifPCB strain has allowed this strain to grow, colonize the root and degrade biphenyl (100 mmol l(-1)) in the presence of sodium arsenate concentrations of up to 11.5 mmol l(-1). The strain retains its ability to colonize the rhizosphere of plants and appears to provide seed germination protection to arsenic which is not seen by the wild type. SIGNIFICANCE AND IMPACT OF THE STUDY: Owing to the significantly improved growth characteristics of both this rhizobacterium and plant species, the use of F113rifPCB-ars endowed with arsenic resistance capabilities may be a promising strategy to remediate mixed organic metal-contaminated sites. These types of strain could be used in the inoculation of metal accumulation plants for phytoremediation.  相似文献   

14.
15.
A field trial was previously conducted in which sugarbeet seeds were either untreated, inoculated with the biocontrol strain Pseudomonas fluorescens F113Rif, or treated with chemical fungicides. Following harvest of sugarbeet, the field site was sown with uninoculated red clover. The aim of this study was to assess the residual impact of the microbial inoculant (and the fungicide treatment) on the diversity of resident rhizobia nodulating the red clover rotation crop. The percentage of nodules yielding rhizobial isolates after surface disinfection was 67% in the control and 70% in the P. fluorescens F113Rif treatment, but only 23% in the chemical treatment. Isolates were characterized by RAPD analysis. The main RAPD cluster (arbitrarily defined at 70% similarity) was prevalent in all three treatments. In addition, the distribution of RAPD clusters followed a log series model, regardless of the treatment applied, indicating that neither the microbial inoculant nor the fungicide treatment had caused a strong perturbation of the rhizobial population. When the P. fluorescens F113Rif and control treatments were compared using diversity indices, however, it appeared that the genetic diversity of rhizobia was significantly less in the inoculated treatment. The percentage of rhizobia sensitive to 2,4-diacetylphloroglucinol (Phl; the antimicrobial metabolite produced by P. fluorescens F113Rif) fluctuated according to field site heterogeneity, and treatments had no effect on this percentage. Yet, the proportion of Phl-sensitive isolates in the main RAPD cluster was lower in the P. fluorescens F113Rif treatment compared with the control, raising the possibility that the residual impact of the inoculant could have been partly mediated by production of Phl. This impact on the rhizobial population took place without affecting the functioning of the Rhizobium–clover symbiosis.  相似文献   

16.
Two repeated DNA sequences of European strains of the symbiotic fungus Tuber melanosporum were isolated and characterized. One of these, SS14, representing about 0.05% of the fungal genome, was shown to be a T. melanosporum-specific sequence by Southern and dot-blot hybridization. The second one, named SS15, is about 0.0025% of the entire genome, and it is specific not only to T. melanosporum but also to the Asian black truffle Tuber indicum. Neither of these two fragments hybridizes with any of the other European truffle species tested. By sequence analysis of these two fragments, PCR primers were designed and used to selectively amplify DNA from T. melanosporum ascocarps and ectomycorrhizae by simple and multiplex PCR. No amplification products were obtained with DNA from either mycorrhizal roots or fruit bodies of other ectosymbiotic fungi. The two identified genomic traits also provided useful information for a better understanding of the phylogenetic relationships among black truffle species and for testing T. melanosporum intraspecific variability.  相似文献   

17.
18.
19.
Different capacity for phenotypic variation of Pseudomonas aurantiaca and P. fluorescens in populations of cyst-like resting cells (CRC) during their germination on solid media, was shown to be a characteristic trait of biodiversity for the dormant forms of these bacteria. This biodiversity manifests itself as qualitative and quantitative differences in the spectra and emergence frequency of phenotype variants, obtained by plating of CRC, and depends on the conditions of CRC formation and storage time. In P. aurantiaca, the variation was associated with transition of the wild-type S-colonial phenotype into the R-type or the more pigmented P-type. These transitions were most pronounced for the CRC obtained under nitrogen depletion (a twofold N limitation), as well as under the influence of a chemical analogue of microbial anabiosis autoinducers, C12-AHB. In the latter case, the frequency of S?R and S?P transitions (up to 70% and 80%, respectively) depended on the C12-AHB concentration (1.0 × 10?4 M and 2.5 × 10?4 M) and on the storage time of CRC suspensions (from 3 days to 1.3 months). In the CRC populations grown in nitrogen-deficient media, R-type appeared with a frequency of up to 45% after at least four months of storage. In the case of P. fluorescens, S?R transitions depended not only on the storage time of CRC and C12-AHB concentrations, but also on the composition of the solid medium used for plating. Differences were shown between the R-, P-, and S-variants of P. aurantiaca in such morphological, physiological, and biochemical characteristics as the growth rate (μmax) in a poor medium, biomass yield (Y max), resistance to streptomycin and tetracycline (LD50), and the productivity in extracellular proteases. The R-and S-variants of P. fluorescens differed in their growth characteristics, resistance to high salinity and oxidative stress, as well as in their sensitivity to exogenous introduction of chemical analogues of microbial autoregulators (C12-AHB and C7-AHB). Hence, both the formation of dormant forms of the various morphological types [1] and intrapopulation phenotypic variability observed during their germination are important for the survival strategy of pseudomonads under unfavorable environmental conditions.  相似文献   

20.
Comparisons were made between two morphological groups ofPythium ultimum var.ultimum strains isolated in a vegetable field in Japan. The groups were distinguished as having smaller or larger sexual organs by the sizes of their antheridia and oogonia. Morphological study indicated that the two groups comprised a single taxon,P. ultimum var.ultimum, by the current taxonomical keys. The smaller group grew faster in the lower temperature range of 4–15°C, whereas the larger group grew faster in the higher temperature range of 25–37°C. Random amplified polymorphic DNA (RAPD) and isozyme analyses revealed genetic dissimilarity between the two groups. Cluster analysis of the isozyme banding patterns with four otherPythium spp. demonstrated that the genetic dissimilarity between the two groups was equivalent to species level. In the field survey, the smaller group was frequently detected in February, May and September but not in July, while the larger group was detected mainly in July and September. The two groups were not distinguishable by their pathogenicity to spinach seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号