首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
beta-N-Acetyl-D-glucosaminidase (NAGase, EC.3.2.1.52), a composition of chitinases, cooperates with endo-chitinase and exo-chitinase to disintegrate chitin into N-acetylglucosamine (NAG). NAGase from prawn (Penaeus vannamei) is involved in digestion and molting processes. The investigation of enzymatic properties, functional groups and catalytic mechanism is an essential mission to its commercial application. Bromacetic acid (BrAc) is a specific modifier for the histidine residue in specific condition. In this paper, the effect of BrAc on prawn NAGase activity for the hydrolysis of pNP-NAG has been investigated. The results showed that BrAc can reversibly and non-competitively inhibit the enzyme activity at appropriate concentrations and the value of IC(50) was estimated to be 17.05+/-0.65 mM. The inhibition kinetics of the enzyme by BrAc has been studied using the kinetic method of the substrate reaction. And the inhibition model was set up and the microscopic rate constants for the reaction of the inhibitor with free enzyme and the enzyme-substrate complexes were determined for inactivation and reactivation. The rate constant of the forward inactivation (k(+0)), which is 1.25 x 10(-3)s(-1), is about eight times as much as that of the reverse reactivation (k(-0)), which is 1.64 x 10(-4)s(-1). Therefore, when the BrAc concentration is sufficiently large, the enzyme is completely inactivated.  相似文献   

2.
Green crab (Scylla serrata) alkaline phosphatase (EC 3.1.3.1) is a metalloenzyme which catalyzes the nonspecific hydrolysis of phosphate monoesters. Some pollutants in seawater affect the enzyme activity causing loss of the biological function of the enzyme, which affects the exuviating crab-shell and threatens the survival of the animal. The present paper studies the effects of thiohydroxyal compounds on the activity of green crab alkaline phosphatase. The results show that thiohydroxyal compounds can lead to reversible inhibition. The equilibrium constants have been determined for dithiothreitol (DTT) and mercaptoethanol (ME) binding with the enzyme and/or the enzyme-substrate complexes. The results show that both DTT and ME are non-competitive inhibitors. The kinetics of enzyme inactivation by ME at low concentrations has been studied using the kinetic method of the substrate reaction. The results suggest that at pH 10.0, the action of ME on green crab ALP is first quick equilibrium binding and then slow inactivation. The microscopic rate constants were determined for inactivation and reactivation. The rate constant of the forward inactivation (k(+0)) is much larger than that of the reverse reactivation (k(-0)). Therefore, when the ME concentration is sufficiently large, the enzyme is completely inactivated.  相似文献   

3.
A new procedure to characterize reversible dead-end inhibitors is presented. Preliminary identification of the inhibitor type is made by plotting vo/vi against the inhibitor concentration at different substrate concentrations. The inhibition constants for competitive, uncompetitive and mixed dead-end inhibitors are determined by secondary plots of l/(slope) vs [S], l/(slope) vs l/[S] and (slope)(Ks + [S] vs [S] respectively. These secondary plots render straight lines only for their corresponding type of inhibitor. For noncompetitive inhibitors all the secondary plots used yield straight lines. Therefore, the application of this plotting procedure leads to unambiguous diagnosis of the inhibitor type. An important feature of the procedure presented here is that the variable used (vo/vi) is independent on Vmax values. Therefore, experimental values obtained from enzyme preparations showing significant differences in their specific activities -i.e. enzyme coming from different purification steps- can be used.  相似文献   

4.
Adenosine 5-phosphosulfate (APS) kinase from Penicillium chrysogenum is irreversibly inactivated by trinitrobenzene sulfonate in a pseudo-first order process. Under standard assay conditions kapp was 1.9 X 10(-3) s-1. Saturating MgATP or MgADP decreased Kapp to a limit of 4.1 X 10(-4) s-1. There are several explanations for the partial protection, including the presence of two essential lysyl side chains, only one of which is at the active site. Analysis of the inactivation kinetics by means of linear plots derived for partial protection yielded dissociation constants for E X MgATP (Kia) and E X MgADP (Kiq) of 2.9 mM and 1.8 mM, respectively. Low concentrations of APS alone provided no protection against trinitrobenzene sulfonate inactivation, but in the presence of 1 mM MgADP, as little as 2 microM APS provided additional protection while 100 microM APS reduced kapp to the limit of 4.1 X 10(-4) s-1. The results confirm the formation of a dead end E X MgADP X APS proposed earlier as the cause of the potent substrate inhibition by APS. Linear plots of 1/delta k versus 1/[MgADP] at different fixed [APS] and of 1/delta k versus 1/[APS] at different fixed [MgADP] were characteristic of the ordered binding of MgADP before APS (or the highly synergistic random binding of the two ligands). The true APS dissociation constant of the dead end E X MgADP X APS complex (K'ib) was determined to be 1.9 microM. From the value of K'ib and the previously reported value of KIB (apparent inhibition constant of APS as a substrate inhibitor of the catalytic reaction at saturating MgATP), the ratio of the MgADP and PAPS release rate constants (k4/k3) was calculated to be 11. Inactivation kinetics was used to study the effects of Mg2+ and high salt on ADP and APS binding. The results indicated that free ADP binds to the enzyme more tightly than does MgADP at low ionic strength. High salt decreased free ADP binding, but had little effect on MgADP binding. APS binds more tightly to E X MgADP in the absence or presence of salt than to E X ADP.  相似文献   

5.
H P Meloche  C T Monti 《Biochemistry》1975,14(16):3682-3687
The enzyme 2-keto-3-deoxy-6-phosphogalactonate aldolase of Pseudomonas saccharophila is inactivated by the substrate analog beta-bromopyruvate, which satisfies several criteria of being an active site directed reagent. The inactivation exhibits saturation kinetics, and both bromopyruvate and pyruvate (substrate) compete for free enzyme. Upon prolonged incubation, inactivation is virtually complete. The Kinact for bromopyruvate is 12 mM and the minimum inactivation half-time is 16 min with a k of 0.0433 min minus 1. Bromopyruvate is also a substrate for the enzyme in that 3(R,S)-[3-3H2]bromopyruvate is asymmetrically detritiated by the enzyme yielding 3(S)-[3-3H,H]bromopyruvate concomitant with inactivation. At various concentrations of bromopyruvate which affect the inactivation rate, the ratio of nanomoles of bromopyruvate turned over/unit of enzyme inactivated remains constant averaging 12:1, consistent with both inactivation and catalysis occurring at a single protein site, the catalytic site. The above value does not take into account a possible hydrogen isotope effect and is not thus an absolute value. The stereochemistry of bromopyruvate turnover catalyzed by this enzyme is the same as that for 2-keto-3-deoxy-6-phosphogluconate aldolase of P. putida. This fact provides the first evidence that the pyruvate-specific portions of the two active sites may have evolved from a common precursor.  相似文献   

6.
Long-chain aliphatic amides, mono- and diamines, mono- and dialcohols, and nitriles were found to inhibit the bacterial luciferase reaction by binding with an enzyme intermediate (II, the luciferase-bound 4 alpha-flavin hydroperoxide). Inhibition was determined by measuring the decay rates of the inhibitor-intermediate II complex at different inhibitor concentrations. The data fit a model which was used to estimate the KI. At high concentrations, a plot of the decay rate (k) vs 1/[I] produced a straight line; extrapolation of this to 1/[I] = 0 yields an estimate of the decay rate at infinite inhibitor concentration which we defined as the inhibitor-enzyme-substrate stabilization constant, kESI.  相似文献   

7.
1. The activities of the soluble reconstitutively active succinate dehydrogenase (EC 1.3.99.1) measured with three artificial electron acceptors, e.g. ferricyanide, phenazine methosulfate and free radical of N,N,N',N'-tetramethyl-p-phenylenediamine (WB), have been compared. The values estimated by extrapolation to infinite acceptor concentration using double reciprocal plots 1/v versus 1/[acceptor] are nearly the same for ferricyanide and phenazine methosulfate and about twice as high for the WB. 2. The double reciprocal plots 1/v versus 1/[succinate] in the presence of malonate at various concentrations of WB give a series of straight lines intercepting in the third quadrant. The data support the mechanism of the overall reaction, in which the reduced enzyme is oxidized by WB before dissociation of the enzyme-product complex. 3. The dependence of the rate of the overall reaction on WB concentration shows that only one kinetically significant redox site of the soluble succinate dehydrogenase is involved in the reduction of WB. 4. Studies of the change of V and Km values during aerobic inactivation of the soluble enzyme suggest that only 'the low Km ferricyanide reactive site' (Vinogradov, A.D., Gavrikova, E.V. and Goloveshkina, V.G. (1975) Biochem. Biophys, Res. Commun. 65, 1264--1269) is involved in reoxidation of the reduced enzyme by WB. 5. The pH dependence of V for the succinate-WB reductase reaction shows that the group of the enzyme with the pKa value of 6.7 at 22 degrees C is responsible for the reduction of dehydrogenase in the enzyme-substrate complex. 6. When WB interacts with the succinate-ubiquinone region of the respiratory chain, the double reciprocal plot 1/v versus 1/[WB] gives a straight line. The thenoyltrifluoroacetone inhibition of succinate-ubiquinone reductase or extraction of ubiquinone alter the 1/v versus 1/[WB] plots for the curves with a positive initial slope intercepting the ordinate at the same V as in the native particles. The data support the mechanism of succinate-ubiquinone reduction, in which no positive modulation of succinate dehydrogenase by ubiquinone exist in the membrane.  相似文献   

8.
应用动力学方法研究了太平洋白对虾(Penaeusvannamei)β-N-乙酰-D-氨基葡萄糖苷酶在二甲亚砜溶液中以pNP-β-D-GlcNAc为底物时酶活力的变化规律.表明酶在DMSO浓度低于4.20mol/L,酶的失活过程是可逆的,DMSO并不造成酶绝对量的减少,仅对酶的活力发生可逆的下降.测得DMSO对酶抑制的IC50为1.2mol/L.观测了在不同底物浓度下NAGase在0、0.35、0.70、1.05、1.40、1.75mol/L的DMSO溶液中的失活过程,分别测定了游离酶(E)和酶-底物络合物(ES)的微观失活速度常数k+0和k′+0比较结果(k+0值远远大于k′+0)表明,在DMSO溶液中游离酶比酶-底物络合物更易失活,即底物的存在对于酶被DMSO的失活具有明显的保护作用.随着DMSO浓度的增加,游离酶的逆向微观复活速度常数k-0却不断降低,说明在高浓度DMSO环境中,NAGase可逆恢复的能力逐渐微弱.  相似文献   

9.
We have investigated the inhibition of Escherichia coli glutamine synthetase (GS) with alpha- and gamma-substituted analogues of phosphinothricin [L-2-amino-4-(hydroxymethylphosphinyl)butanoic acid (PPT)], a naturally occurring inhibitor of GS. These compounds display inhibition of bacterial GS that is competitive vs L-glutamate, with Ki values in the low micromolar range. At concentrations greater than Ki the phosphinothricins caused time-dependent loss of enzyme activity, while dilution after enzyme inactivation resulted in recovery of enzyme activity. ATP was required for inactivation; the nonhydrolyzable ATP analogue AMP-PCP failed to support inhibition of GS by the phosphinothricins. The binding of these inhibitors to the enzyme was also characterized by measurement of changes in protein fluorescence, which provided similar inactivation rate constants k1 and k2 for the entire series of compounds. Rate constants koff for recovery were also determined by fluorescence measurement and were comparable for both PPT and the gamma-hydroxylated analogue GHPPT and significantly greater for the alpha- and gamma-alkyl-substituted compounds. Electron paramagnetic resonance spectra provided information on the interaction of the phosphinothricins with the manganese form of the enzyme in the absence of ATP, and significant binding was observed for PPT and GHPPT. 31P NMR experiments confirmed that enzyme inactivation is accompanied by hydrolysis of ATP, although phosphorylated phosphinothricins could not be detected in solution. The kinetic behavior of these compounds is consistent with a mechanism involving inhibitor phosphorylation, followed by release from the active site and simultaneous hydrolysis to form Pi and free inhibitor.  相似文献   

10.
Human phenylalanine hydroxylase was expressed and purified from Escherichia coli as a fusion protein with maltose-binding protein. After removal of the fusion partner, the effects of increasing urea concentrations on enzyme activity, aggregation, unfolding, and refolding were examined. At pH 7.50, purified human phenylalanine hydroxylase is transiently activated in the presence of 0-4 M urea but slowly inactivated at higher denaturant concentrations. Intrinsic tryptophan fluorescence spectroscopy showed that the enzyme is denatured through at least two distinct transitions. The presence of phenylalanine (L-Phe) shifts the transition midpoint of the first transition from 1.4 to 2.7 M urea, whereas the second transition is unaffected by this substrate. Apparently the free energy of denaturation was almost identical for the free enzyme and for the enzyme-substrate complex, but significant differences in dDeltaG(D)/d[urea] (m(D) values) were observed for the first denaturation transition. In the absence of substrate, a high rate of non-covalent aggregation was observed for the enzyme in the presence of 1-4 M urea. All three tryptophan residues in the enzyme (Trp-120, Trp-187, and Trp-326) were mutated to phenylalanine, either as single mutations or in combination, in order to identify the residues involved in the spectroscopic transitions. A gradual dissociation of the native tetrameric enzyme to increasingly denatured dimeric and monomeric forms was demonstrated by size exclusion chromatography in the presence of denaturants.  相似文献   

11.
Strong denaturants can be used to distinguish between heat-induced changes in the primary structure of the enzyme molecule and heat-induced changes in higher orders of structure. In this paper, we report on an attempt to use urea in studying the mechanism of thermal inactivation of the extracellular proteinase from Pseudomonas fluorescens 22F. Addition of urea at> 2 (without heating) resulted in inactivation which was, however, reversible. Diluting to concentrations < 2 urea completely restored proteolytic activity. The rate of inactivation at 100°C of the proteinase was increased when 6 urea was present during heat treatment. Also at lower urea concentrations, the inactivation rate at 100°C was increased. Addition of 6 urea to the enzyme solution after heat treatment also increased the extent of inactivation while low urea concentrations (< 1 ) did not. It was concluded that cyanate formed from urea at high temperature was the cause of increased inactivation since addition of cyanate could increase the inactivation rate while a treatment to remove cyanate from a heated urea solution could prevent increase tnactivation. The use of urea does not appear to be suitable for the elucidation of the mechanism of thermal inactivation of the extracellular proteinase from P. fluorescens 22F, but might be applicable to other enzymes when treated (cyanate free) urea is used after heat treatment; however, use of urea (even if cyanate free) during heat treatment is not possible because cyanate is induced by the very heat treatment.  相似文献   

12.
Purified β-glucosidase fromCellulomonas biazotea had an apparentK m andV for 2-nitrophenyl β-d-glucopyranoside (oNPG) of 0.416 mmol/L and 0.22 U/mg protein, respectively. The activation energy for the hydrolysis of pNPG of β-glucosidase was 65 kJ/mol. The inhibition by Mn2+ vs. oNPG of parental β-glucosidase was of mixed type with apparent inhibition constants of 0.19 and 0.60 μmol/L for the enzyme and enzyme-substrate complex, respectively. Ethanol at lower concentrations activated while at higher concentrations it inhibited the enzyme. The determination of apparent pK a’s at different temperatures and in the presence of 30 % dioxane indicated two carboxyl groups which control theV value. The thermal stability of β-glucosidase decreased in the presence of 10 % ethanol. The half-life of β-glucosidase in 1.75 mol/L urea at 35 °C was 145 min, as determined by 0–9 mol/L transverse urea gradient-PAGE. This work was financed in part by a grant made by theUS Agency for International Development under PSTC proposal 6-163,USAID grant no. 9365542-G-00-89-42-00, and PAEC.  相似文献   

13.
The effects of hydrogen peroxide (H2O2) on prawn NAGase activity for the hydrolysis of pNP-beta-D-GlcNAc have been studied. The results show that H2O2 can reversible inhibit the enzyme (IC50 = 0.85 M) and the inhibition is of a mixed type. The kinetics show that k+o is much larger than k+0, indicating the free enzyme is more susceptible than the enzyme-substrate complex in the H2O2 solution. It is suggested that the presence of the substrate offers marked protection against inhibition by H202. Changes of activity and conformation of the enzyme in different concentrations of H202 have been compared by measuring the fluorescence spectra and residual activity and show that the change of conformation is more rapidly than that of the residual activity, which implies that the whole conformation of the enzyme changes more rapidly than the conformation of the active centre of the enzyme in the H2O2 solution.  相似文献   

14.
The essential facts relating to the reaction between phage, sodium penicillin G, and the K race of Staphylococcus aureus are: 1. Except when [P] is very high, massive lysis of the cellular substrate occurs considerably sooner in the P-PN-B mixture than in preparations containing P alone or PN alone. 2. The accelerative effect is present in concentrations of PN varying from 0.1 to 1 x 10(4) units/ml. 3. Acceleration of lysis can be secured by exposing staphylococci to PN prior to treatment with P. 4. In certain concentrations of P and B in tryptose-phosphate broth, P formation apparently takes place without bacterial reproduction. The extent to which P is produced is influenced very little by [PN](0) but is markedly dependent upon [P](0). With low P/B ratios the [P] curve shows a lag followed by a rapid rise to a peak of 25 to 30 times [P](0). When the P/B ratio approaches unity there is a considerable primary drop in [P] and later an increase which, however, fails to bring the total P produced above [P](0). When P/B is still higher, the [P] curve drops profoundly as the bacteria lyse and never enters into a productive phase. 5. In Locke's solution mixtures of P-PN-B, containing 5 to 10 per cent broth, P formation occurs in the absence of detectable cellular reproduction to the extent of a four- to sixfold increase over [P](0). 6. Direct microscopic examination of wet preparations removed during the P-PN-B reaction has disclosed swelling of the staphylococci. The swollen cells are three times the diameter of normal S. aureus secured from an 18 hour culture. Cellular swelling apparently accounts for the experimental observation that the curve for lysis plotted from [B](K) lags considerably behind the [B](D) curve. Increase in the size of individual cells would tend to keep the photoelectric colorimeter measurements high even while the direct count was diminishing. 7. When the P-PN-B reaction is carried out in broth, attainment of the peak in P production is followed by a moderate loss of P. This does not occur when P, PN, and B react in Locke's solution. The reaction dealt with here between P, PN, and S. aureus is similar in a good many respects to that investigated by Price for P, PN, and S. muscae. For example, in both cases P is produced without bacterial reproduction. There are, however, certain noteworthy differences: (a) PN increases the time of half-lysis for S. muscae and lessens it for S. aureus. (b) The yields of P in ranges of [P] and [PN] permitting P formation without bacterial reproduction are higher for S. muscae than for S. aureus. (c) An increase in [PN] from 33 units/ml, to 833 units/ml, greatly reduces the final plaque count secured with S. muscae as a substrate but has no discernible influence on the reaction when S. aureus is used. Currently studies are in progress on the P-PN-B reaction in a synthetic medium in order to obtain information on the mechanism involved.  相似文献   

15.
Changes of activity and conformation of Ampullarium crossean beta-glucosidase in different concentrations of guanidine hydrochloride (GuHCl) have been studied by measuring the fluorescence spectra and its relative activity after denaturation. The fluorescence intensity of the enzyme decreased distinctly with increasing guanidine concentrations, the emission peaks appeared red shifted (from 338.4 to 350.8 nm), whereas a new fluorescence emission peak appeared near 310 nm. Changes in the conformation and catalytic activity of the enzyme were compared. A corresponding rapid decrease in catalytic activity of the enzyme was also observed. The extent of inactivation was greater than that of conformational changes, indicating that the active site of the enzyme is more flexible than the whole enzyme molecule. k(+0)>k(+0)' also showed that the enzyme was protected by substrate to a certain extent during guanidine denaturation.  相似文献   

16.
Mechanism of action of Moloney murine leukemia virus RNase H III.   总被引:2,自引:1,他引:1       下载免费PDF全文
The mechanism of action of Moloney murine leukemia virus RNase H III was studied, utilizing the model substrate (A)n. (dT)n and polyacrylamide gel electrophoresis to assay enzyme activity. Examination by electrophoresis on 15% polyacrylamide gels in 7 M urea and on DEAE-cellulose paper in 7 M urea revealed that, early in a reaction with [3H](A)n. (dT)n as substrate, RNase H III generated products ranging in length from 80 to 90 nucleotides to less than 10 nucleotides and that after extended incubation the limit digest products generated were 3 to 15 nucleotides long. Product oligomers were of the following configuration: [5'-P, 3'-OH](A)n. RNase H III was shown to be an exonuclease requiring free ends in its substrate for activity by the inability to degrade RNA inserted in Escherichia coli ColE1 plasmid DNA. The enzyme was capable of attacking RNA in RNA-DNA hybrids in the 5' to 3' and 3' to 5' directions as demonstrated by the use of [3H, 5'-32P](A)600. (dT)n and cellulose-[3H](A)n. (dT)n. Rnase H III was random in its mode of action because addition of excess unlabeled (A)n. (dT)n to an ongoing reaction with [3H](A)n. (dT)n as substrate resulted in immediate inhibition of enzyme activity.  相似文献   

17.
The in vitro binding properties of the novel muscarinic antagonist [3H]AF-DX 116 were studied using a rapid filtration technique. Association and dissociation rates of [3H]AF-DX 116 binding were rapid at 25 degrees C (2.74 and 2.70 X 10(7) min-1 M-1 for K+1; 0.87 and 0.93 min-1 for k-1) but 20-40 times slower at 0-4 degrees C (0.13 and 0.096 X 10(7) min-1 M-1 for k+1; 0.031 and 0.022 min-1 for k-1 in cerebral cortical and cardiac membranes, respectively). Kinetic dissociation constants (Kds) were estimated to be 31.8 nM and 30.9 nM at 25 degrees C; 23.1 nM and 0-4 degrees C for the cerebral cortex and heart, respectively. In saturation studies, [3H]AF-DX 116 labeled 29 percent of the total [3H](-)QNB binding sites in the cerebral cortical membranes and 87 percent in the cardiac membranes, with Kd values of 28.9 nM and 17.9 nM, respectively. Muscarinic antagonists inhibited [3H]AF-DX 116 binding in a rank order of potency of atropine greater than dexetimide greater than AF-DX 116 greater than PZ greater than levetimide in both tissues. Except for PZ/[3H]AF-DX 116 and AF-DX 116/[3H]AF-DX 116 in the cerebral cortex, all the antagonist competition curves had Hill coefficients close to one. Carbachol and oxotremorine produced shallow inhibition curves against [3H]AF-DX 116 binding in both tissues. Regional distribution studies with [3H](-)QNB, [3H]PZ and [3H]AF-DX 116 showed that most of the muscarinic receptors in the cerebral cortex, hippocampus, nucleus accumbens and corpus striatum are of the M1 subtype while those in the brainstem, cerebellum and other lower brain regions are of the M2 subtype. These results indicate that [3H]AF-DX 116 is a useful probe for the study of heterogeneity of muscarinic cholinergic receptors.  相似文献   

18.
Catalytic mechanism of thioltransferase   总被引:4,自引:0,他引:4  
To evaluate potential catalytic mechanism for thioltransferase thiol-disulfide exchange reactions, seven pig liver mutants were constructed by site-directed mutagenesis. All the expressed enzymes, including wild-type and mutants with the exception of the inactive mutant, ETT-C22S, were variably inhibited by iodoacetamide, and similar results were obtained when these enzymes were preincubated with GSH. However, when preincubated with S-sulfocysteine or hydroxyethyl disulfide, the activity of the enzymes was totally or partially protected against inhibition by iodoacetamide, with the exception of the mutants, ETT-C25S and ETT-C25A. When simultaneously pretreated with GSH and S-sulfocysteine, all enzymes were highly protected. Isoelectric focusing analysis of the above preincubation mixtures showed that different enzyme-substrate intermediates occurred. Using radioactively labeled substrates, [U-14C]cystine and [glycine-2-3H] GSH, enzyme-substrate intermediates were detected. These data indicate that reduced thioltransferase reacts first with disulfide substrates, then with a thiol substrate, e.g. GSH. The formation of either enzyme-substrate mixed disulfide or protein intramolecular disulfide protected the enzyme from inactivation by iodoacetamide. Based on the experimental results, alternative methods of the catalytic mechanism for thioltransferases are proposed.  相似文献   

19.
The Slater-Bonner method which is used for graphic determination of substrate constant (Ks) by linear dependence of apparent Michaelis constant (Km(app)) on the limiting rate (V(app)) of enzyme-catalysed reactions with activator participation has been critically analysed. It has been shown that although it is possible to record the mechanisms of such reactions as a scheme similar to Michaelis-Menten model which allow to find correlation Km(app) and V(app) as equation Km(app) = Ks + V(app)/k1[E]0 ([E]0 is a total enzyme concentration, k1 is a rate constant of enzyme-substrate complex formation from free enzyme and substrate) in order to calculate Ks and individual rate constants (k1, k(-1)), but this approach for investigation of all reactions with activator participation ought not to be used. The above equation is not obeyed in general, it may be true for some mechanisms only or under certain ratios of kinetic parameters of enzyme-catalysed reactions.  相似文献   

20.
Glutamate dehydrogenase (GDH) of Clostridium symbiosum, like GDH from other species, is inactivated by pyridoxal 5'-phosphate (pyridoxal-P). This inactivation follows a similar pattern to that for beef liver GDH, in which a non-covalent GDH-pyridoxal-P complex reacts slowly to form a covalent complex in which pyridoxal-P is in a Schiff's-base linkage to lysine residues. [formula: see text] The equilibrium constant of this first-order reaction on the enzyme surface determines the final extent of inactivation observed [S. S. Chen and P. C. Engel (1975) Biochem. J. 147, 351-358]. For clostridial GDH, the maximal inactivation obtained was about 70%, reached after 10 min with 7 mM pyridoxal-P at pH 7. In keeping with the model, (a) inactivation became irreversible after reduction with NaBH4. (b) The NaBH4-reduced enzyme showed a new absorption peak at 325 nm. (c) Km values for NAD+ and glutamate were unaltered, although Vmax values were decreased by 70%. Kinetic analysis of the inactivation gave values of 0.81 +/- 0.34 min-1 for k3 and 3.61 +/- 0.95 mM for k2/k1. The linear plot of 1/(1-R) against 1/[pyridoxal-P], where R is the limiting residual activity reached in an inactivation reaction, gave a slightly higher value for k2/k1 of 4.8 +/- 0.47 mM and k4 of 0.16 +/- 0.01 min-1. NADH, NAD+, 2-oxoglutarate, glutarate and succinate separately gave partial protection against inactivation, the biggest effect being that of 40 mM succinate (68% activity compared with 33% in the control). Paired combinations of glutarate or 2-oxoglutarate and NAD+ gave slightly better protection than the separate components, but the most effective combination was 40 mM 2-oxoglutarate with 1 mM NADH (85% activity at equilibrium). 70% inactivated enzyme showed an incorporation of 0.7 mM pyridoxal-P/mol subunit, estimated spectrophotometrically after NaBH4 reduction, in keeping with the 1:1 stoichiometry for the inactivation. In a sample protected with 2-oxoglutarate and NADH, however, incorporation was 0.45 mol/mol, as against 0.15 mol/mol expected (85% active). Tryptic peptides of the enzyme, modified with and without protection, were purified by HPLC. Two major peaks containing phosphopyridoxyllysine were unique to the unprotected enzyme. These peaks yielded three peptide sequences clearly homologous to sequences of other GDH species. In each case, a gap at which no obvious phenylthiohydantoin-amino-acid was detected, matched a conserved lysine position. The gap was taken to indicate phosphopyridoxyllysine which had prevented tryptic cleavage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号