首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Angiogenesis is a process modulated by several endogenous vascular growth factors as well as by oxygen conditions. For example VEGF failed to induce useful therapeutic angiogenesis in clinical trials. We used a combinatory phage display peptide library screening on human umbilical endothelial cells under normoxia and hypoxia conditions in order to identify novel peptides that bind endothelial cells. The identified peptides induced angiogenesis as demonstrated by endothelial cell proliferation, migration and tube formation. Injection of peptides into the ears of mice resulted in increased numbers of blood vessels. Peptides did not induce VEGF receptor gene expression indicating a possible VEGF unrelated mechanism.  相似文献   

2.
To explore the role of adrenomedullin (ADM) in pathophysiology of ischemic heart disease, we investigated the effects of hypoxia on the production and secretion of ADM in cultured human coronary artery endothelial cells. Treatment with hypoxia (5% CO2/94% N2/1% O2) for 6 and 12 h increased expression levels of ADM mRNA 2.2-fold and fivefold compared with the normoxia control, respectively. The levels of immunoreactive ADM in the media were increased by 12-h hypoxia about fivefold compared with the control (39.0+/-1.1 fmol/10(5) cells per 12 h under hypoxia and 7.9+/-0.4 fmol/10(5) cells per 12 h under normoxia; P<0.01, n = 4, mean +/- SEM). Reverse-phase high-performance liquid chromatography of the extracts of culture media under normoxia and hypoxia showed one major peak eluting in the position of human ADM standard. The production and secretion of ADM were increased in cultured human coronary artery endothelial cells under hypoxia. ADM may therefore play an important pathophysiological role in ischemic heart disease.  相似文献   

3.
The cytokine midkine (MK) promotes tumor growth mainly by inducing angiogenesis. Here, we identified the source of MK in the vascular system under hypoxic conditions and demonstrated the relevance of MK during ischemia of normal tissue. Hypoxia increased MK protein expression in human polymorphonuclear neutrophils (PMN), monocytes, and human umbilical vein endothelial cells (HUVEC) compared with normoxia. Immunoelectron microscopy showed elevated cell surface expression of MK in PMN and monocytes during hypoxia. However, only HUVEC released significant amounts of soluble MK during hypoxia compared with normoxia (301 ± 81 pg/ml vs. 158 ± 45 pg/ml; P < 0.05). Exogenous MK induced neovascularization in a chorioallantoic membrane (CAM) assay compared with negative control as measured by counting the number of branching points per visual field (1,074 ± 54 vs. 211 ± 70; P < 0.05). In a hind limb ischemia model, the angiogenic response was almost completely absent in MK-deficient mice, whereas control animals showed a profound angiogenic response measured as proliferating endothelial cells per visual field (45 ± 30 vs. 169 ± 34; P < 0.01). These unanticipated results identified endothelial cells as the source of soluble MK in the vascular system during hypoxia and defined MK as a pivotal player of angiogenesis during ischemia in nonmalignant tissue.  相似文献   

4.
5.
Pancreatic cancer is characterized by excessive desmoplastic reaction and by a hypoxic microenvironment within the solid tumor mass. Chronic pancreatitis is also characterized by fibrosis and hypoxia. Fibroblasts in the area of fibrosis in these pathological settings are now recognized as activated pancreatic stellate cells (PSCs). Recent studies have suggested that a hypoxic environment concomitantly exists not only in pancreatic cancer cells but also in surrounding PSCs. This study aimed to clarify whether hypoxia affected the cell functions in PSCs. Human PSCs were isolated and cultured under normoxia (21% O(2)) or hypoxia (1% O(2)). We examined the effects of hypoxia and conditioned media of hypoxia-treated PSCs on cell functions in PSCs and in human umbilical vein endothelial cells. Hypoxia induced migration, type I collagen expression, and vascular endothelial growth factor (VEGF) production in PSCs. Conditioned media of hypoxia-treated PSCs induced migration of PSCs, which was inhibited by anti-VEGF antibody but not by antibody against hepatocyte growth factor. Conditioned media of hypoxia-treated PSCs induced endothelial cell proliferation, migration, and angiogenesis in vitro and in vivo. PSCs expressed several angiogenesis-regulating molecules including VEGF receptors, angiopoietin-1, and Tie-2. In conclusion, hypoxia induced profibrogenic and proangiogenic responses in PSCs. In addition to their established profibrogenic roles, PSCs might play proangiogenic roles during the development of pancreatic fibrosis, where they are subjected to hypoxia.  相似文献   

6.
Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1alpha protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.  相似文献   

7.
Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model--a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis.  相似文献   

8.
We recently demonstrated that mice deficient in endothelial nitric oxide (NO) synthase (eNOS) have congenital septal defects and postnatal heart failure. However, the mechanisms by which eNOS affects heart development are not clear. We hypothesized that deficiency in eNOS impairs myocardial angiogenesis. Myocardial capillary densities were measured morphometrically in neonatal mouse hearts. In vitro tube formation on Matrigel was investigated in cardiac endothelial cells. In vivo myocardial angiogenesis was performed by implanting Matrigel in the left ventricular myocardium. Myocardial capillary densities and VEGF mRNA expression were decreased in neonatal eNOS(-/-) compared with neonatal wild-type mice (P < 0.01). Furthermore, in vitro tube formation from cardiac endothelial cells and in vivo myocardial angiogenesis were attenuated in eNOS(-/-) compared with wild-type mice (P < 0.01). In vitro tube formation was inhibited by N(G)-nitro-l-arginine methyl ester in wild-type mice and restored by a NO donor, diethylenetriamine-NO, in eNOS(-/-) mice (P < 0.05). In conclusion, deficiency in eNOS decreases VEGF expression and impairs myocardial angiogenesis and capillary development. Decreased myocardial angiogenesis may contribute to cardiac abnormalities during heart development in eNOS(-/-) mice.  相似文献   

9.
AMP-activated protein kinase (AMPK) is a stress-activated protein kinase that is regulated by hypoxia and other cellular stresses that result in diminished cellular ATP levels. Here, we investigated whether AMPK signaling in endothelial cells has a role in regulating angiogenesis. Hypoxia induced the activating phosphorylation of AMPK in human umbilical vein endothelial cells (HUVECs), and AMPK activation was required for the maintenance of pro-angiogenic Akt signaling under these conditions. Suppression of AMPK signaling inhibited both HUVEC migration to VEGF and in vitro differentiation into tube-like structures in hypoxic, but not normoxic cultures. Dominant-negative AMPK also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. These data identify AMPK signaling as a new regulator of angiogenesis that is specifically required for endothelial cell migration and differentiation under conditions of hypoxia. As such, endothelial AMPK signaling may be a critical determinant of blood vessel recruitment to tissues that are subjected to ischemic stress.  相似文献   

10.
Erythropoietin promotes the formation of granulation tissue when administered to soft tissue wounds and it was shown to be most effective under tissue hypoxia. However, the action of erythropoietin on the cellular level is not well understood. In order to get a better insight into these processes, an in vitro wound healing assay was applied. Two main players of soft tissue healing—fibroblasts and microvascular endothelial cells—were used as mono- and co-cultures, subsequently inflicting in vitro wounds. Cell migration, proliferation, the differentiation of fibroblasts to myofibroblasts, and the release of vascular endothelial cell growth factor A and angiogenin were quantified in response to hypoxia and erythropoietin (5 IU/ml). Erythropoietin supplementation did neither affect proliferation nor migration of endothelial cells and fibroblasts under normoxia. Under hypoxia, the reduced fibroblast migration was ameliorated by erythropoietin. This effect coincided with an attenuated release of vascular endothelial growth factor A, whereas angiogenin release was unaffected by erythropoietin. The in vitro model applied in this study may represent an adequate approximation to certain aspects of the in vivo status of soft tissue regeneration and the results might serve to interpret the in vivo efficiency of erythropoietin at the cellular level: Erythropoietin has different impacts on the cells in normoxia and hypoxia. Its positive influence on fibroblast migration during hypoxia seems to support the strategies of applying erythropoietin in those chronic wounds, which exhibit fibroblastic dysfunction although good vascularisation is present.  相似文献   

11.
In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.  相似文献   

12.
13.
Nitric oxide (NO) shows cytotoxicity, and its reaction products with reactive oxygen species, such as peroxynitrite, are potentially more toxic. To examine the role of O2 in the NO toxicity, we have examined the proliferation of cultured human umbilical vein endothelial cells in the presence or absence of NO donor, ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-++ +ium-1,2-diolate) (DETA-NONOate) (100-500 microM), under normoxia (air), hypoxia (< 0.04% O2) or hyperoxia (88-94% O2). It was found that the dose dependency on NONOate was little affected by the ambient O2 concentration, showing no apparent synergism between the two treatments. We have also examined the effects of exogenous NO under normoxia and hyperoxia on the cellular activities of antioxidant enzymes involved in the H2O2 elimination, since many of them are known to be inhibited by NO or peroxynitrite in vitro. Under normoxia DETA-NONOate (500 microM) caused 25% decrease in catalase activity and 30% increases in glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities in 24h. Under hyperoxia NO caused about 25% decreases in activities of catalase, glutathione reductase and glucose-6-phosphate dehydrogenase. The H2O2 removal rate by NO-treated cells was computed on the mathematical model for the enzyme system. It was concluded that the cellular antioxidant function is little affected by NO under normoxia but that it is partially impaired when the cells are exposed to NO under hyperoxia.  相似文献   

14.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

15.
16.
Ma Y  Liang D  Liu J  Axcrona K  Kvalheim G  Stokke T  Nesland JM  Suo Z 《PloS one》2011,6(12):e29170
Hypoxia is an important environmental change in many cancers. Hypoxic niches can be occupied by cancer stem/progenitor-like cells that are associated with tumor progression and resistance to radiotherapy and chemotherapy. However, it has not yet been fully elucidated how hypoxia influences the stem-like properties of prostate cancer cells. In this report, we investigated the effects of hypoxia on human prostate cancer cell lines, PC-3 and DU145. In comparison to normoxia (20% O(2)), 7% O(2) induced higher expressions of HIF-1α and HIF-2α, which were associated with upregulation of Oct3/4 and Nanog; 1% O(2) induced even greater levels of these factors. The upregulated NANOG mRNA expression in hypoxia was confirmed to be predominantly retrogene NANOGP8. Similar growth rates were observed for cells cultivated under hypoxic and normoxic conditions for 48 hours; however, the colony formation assay revealed that 48 hours of hypoxic pretreatment resulted in the formation of more colonies. Treatment with 1% O(2) also extended the G(0)/G(1) stage, resulting in more side population cells, and induced CD44 and ABCG2 expressions. Hypoxia also increased the number of cells positive for ABCG2 expression, which were predominantly found to be CD44(bright) cells. Correspondingly, the sorted CD44(bright) cells expressed higher levels of ABCG2, Oct3/4, and Nanog than CD44(dim) cells, and hypoxic pretreatment significantly increased the expressions of these factors. CD44(bright) cells under normoxia formed significantly more colonies and spheres compared with the CD44(dim) cells, and hypoxic pretreatment even increased this effect. Our data indicate that prostate cancer cells under hypoxia possess greater stem-like properties.  相似文献   

17.
Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33 degrees C under 2% O(2)-5% CO(2)-90% N(2) (hypoxia) or 95% air-5% CO(2) (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly (P < 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 +/- 5.5%) than with normoxia-cultured cells (67.0 +/- 9.6%) or noncultured cells (70.4 +/- 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.  相似文献   

18.
19.
Lee SJ  Kim HP  Jin Y  Choi AM  Ryter SW 《Autophagy》2011,7(8):829-839
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1 (+/-) ) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1 (+/-) mice relative to wild-type mice. Endothelial cells from Becn1 (+/-) mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1 (+/-) cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1 (+/-) endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.  相似文献   

20.
Lymnaea stagnalis were exposed to hypoxic and chemical challenges while ventilation, heart rate and metabolism were monitored. Hypoxia increased ventilatory behavior, but this response was eliminated by immersion in 0.75 mM nitric oxide synthase (NOS) inhibitor, 7-nitroindazole (7 NI). 7 NI also suppressed ventilatory behavior under normoxia. 10.0 mM L-arginine (ARG, the NOS substrate) increased ventilatory behavior under normoxia, but dampened the hypoxic response. The heart-rate response to NOS inhibition exhibited dose-dependent contradictory characteristics. Under both normoxia and hypoxia 0.25 mM 7 NI increased heart rate, while 0.75 mM 7 NI suppressed it. The effect of 0.50 mM 7 NI depended on whether normoxia or hypoxia was coincident; under normoxia 0.50 mM 7 NI increased heart rate, while under hypoxia this concentration suppressed heart rate. Exposure to ARG did not elicit dose-dependent contradictory responses. Heart rate increased when treated with 10.0 mM ARG under normoxia and hypoxia, while 1.0 mM ARG increased heart rate only under hypoxia. Metabolic responses to NOS inhibition also exhibited dose-dependent contradictory changes. V.O2 decreased over 60% in response to 0.75 mM 7 NI, and baseline V.O2 was restored when exposure ceased. In contrast, 0.25 mM 7 NI increased V.O2 10%, and the increase continued after exposure ceased. 0.50 mM 7 NI decreased V.O2 40%, but V.O2 increased when exposure ceased. ARG had only the effect of increasing V.O2, and only at 10.0 mM concentration. Based on these results and on NO's known role as a neuromodulator, we conclude that the cardio-respiratory responses to hypoxia are, in part, mediated by NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号