首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
Kitagawa M  Umezu M  Aoki J  Koizumi H  Arai H  Inoue K 《FEBS letters》2000,479(1-2):57-62
LIS1 is a product of the causative gene for type I lissencephaly characterized by a smooth brain surface due to a defect in neuronal migration during brain development and a regulatory subunit of platelet-activating factor acetylhydrolase (PAF-AH). It is also a mammalian homologue of the fungal nuclear distribution (nud) gene, nudF, which controls the migration of fungal nuclei. Using the two-hybrid system, we identified a novel LIS1-interacting protein, rat NUDE (rNUDE), and found that it is a mammalian homologue of another fungal nud gene product, NUDE, and Xenopus mitotic phosphoprotein 43 which is phosphorylated in a cell cycle-dependent manner. rNUDE and the catalytic subunits of PAF-AH interact with the N- and C-termini of LIS1, respectively. However, these proteins, instead of simultaneously binding to LIS1, appeared to bind to LIS1 in a competitive manner. These results suggest that LIS1 functions in nuclear migration by interacting with multiple intracellular proteins in mammals.  相似文献   

3.
Platelet-activating factor acetylhydrolase (PAF-AH)   总被引:4,自引:0,他引:4  
Platelet-activating factor (PAF) is one of the most potent lipid messengers involved in a variety of physiological events. The acetyl group at the sn-2 position of its glycerol backbone is essential for its biological activity, and its deacetylation induces loss of activity. The deacetylation reaction is catalyzed by PAF-acetylhydrolase (PAF-AH). A series of biochemical and enzymological evaluations revealed that at least three types of PAF-AH exist in mammals, namely the intracellular types I and II and a plasma type. Type I PAF-AH is a G-protein-like complex consisting of two catalytic subunits (alpha1 and alpha2) and a regulatory beta subunit. The beta subunit is a product of the LIS1 gene, mutations of which cause type I lissencephaly. Recent studies indicate that LIS1/beta is important in cellular functions such as induction of nuclear movement and control of microtubule organization. Although substantial evidence is accumulating supporting the idea that the catalytic subunits are also involved in microtubule function, it is still unknown what role PAF plays in the process and whether PAF is an endogenous substrate of this enzyme. Type II PAF-AH is a single polypeptide and shows significant sequence homology with plasma PAF-AH. Type II PAF-AH is myristoylated at the N-terminus and like other N-myristoylated proteins is distributed in both the cytosol and membranes. Plasma PAF-AH is also a single polypeptide and exists in association with plasma lipoproteins. Type II PAF-AH as well as plasma PAF-AH may play a role as a scavenger of oxidized phospholipids which are thought to be involved in diverse pathological processes, including disorganization of membrane structure and PAF-like proinflammatory action. In this review, we will focus on the structures and possible biological functions of intracellular PAF-AHs.  相似文献   

4.
Wang H  Sun X  Luo Y  Lin Z  Wu J 《FEBS letters》2006,580(25):6015-6021
  相似文献   

5.
6.
The network of protein–protein interactions of the Dictyostelium discoideum autophagy pathway was investigated by yeast two-hybrid screening of the conserved autophagic proteins Atg1 and Atg8. These analyses confirmed expected interactions described in other organisms and also identified novel interactors that highlight the complexity of autophagy regulation. The Atg1 kinase complex, an essential regulator of autophagy, was investigated in detail here. The composition of the Atg1 complex in D. discoideum is more similar to mammalian cells than to Saccharomyces cerevisiae as, besides Atg13, it contains Atg101, a protein not conserved in this yeast. We found that Atg101 interacts with Atg13 and genetic disruption of these proteins in Dictyostelium leads to an early block in autophagy, although the severity of the developmental phenotype and the degree of autophagic block is higher in Atg13-deficient cells. We have also identified a protein containing zinc-finger B-box and FNIP motifs that interacts with Atg101. Disruption of this protein increases autophagic flux, suggesting that it functions as a negative regulator of Atg101. We also describe the interaction of Atg1 kinase with the pentose phosphate pathway enzyme transketolase (TKT). We found changes in the activity of endogenous TKT activity in strains lacking or overexpressing Atg1, suggesting the presence of an unsuspected regulatory pathway between autophagy and the pentose phosphate pathway in Dictyostelium that seems to be conserved in mammalian cells.  相似文献   

7.
8.
Platelet-activating factor (PAF) is an important mediator of cell loss following diverse pathophysiological challenges, but the manner in which PAF transduces death is not clear. Both PAF receptor-dependent and -independent pathways are implicated. In this study, we show that extracellular PAF can be internalized through PAF receptor-independent mechanisms and can initiate caspase-3-dependent apoptosis when cytosolic concentrations are elevated by approximately 15 pM/cell for 60 min. Reducing cytosolic PAF to less than 10 pM/cell terminates apoptotic signaling. By pharmacological inhibition of PAF acetylhydrolase I and II (PAF-AH) activity and down-regulation of PAF-AH I catalytic subunits by RNA interference, we show that the PAF receptor-independent death pathway is regulated by PAF-AH I and, to a lesser extent, by PAF-AH II. Moreover, the anti-apoptotic actions of PAF-AH I are subunit-specific. PAF-AH I alpha1 regulates intracellular PAF concentrations under normal physiological conditions, but expression is not sufficient to reduce an acute rise in intracellular PAF levels. PAF-AH I alpha2 expression is induced when cells are deprived of serum or exposed to apoptogenic PAF concentrations limiting the duration of pathological cytosolic PAF accumulation. To block PAF receptor-independent death pathway, we screened a panel of PAF antagonists (CV-3988, CV-6209, BN 52021, and FR 49175). BN 52021 and FR 49175 accelerated PAF hydrolysis and inhibited PAF-mediated caspase 3 activation. Both antagonists act indirectly to promote PAF-AH I alpha2 homodimer activity by reducing PAF-AH I alpha1 expression. These findings identify PAF-AH I alpha2 as a potent anti-apoptotic protein and describe a new means of pharmacologically targeting PAF-AH I to inhibit PAF-mediated cell death.  相似文献   

9.
H7N9病毒感染除引起患者呼吸道症状外,还可能导致中枢神级系统病症。血小板活化因子(Platelet activating factor,PAF)是一种生物活性磷脂,参与神经系统的部分功能。但尚未有研究讨论PAF是否参与H7N9病毒中枢神经系统疾病致病机制。本研究通过H7N9病毒体外感染小鼠小胶质细胞(BV2)和神经母瘤细胞(N2a)发现,H7N9流感病毒可以感染BV2、N2a细胞,引起细胞明显病变并使细胞活性下降;此外H7N9病毒感染BV2细胞后,PAF浓度水平明显上升,PAF乙酰水解酶(Platelet activating factor acetylhydrolase,PAF-AH)基因pafah1b1和pafah2表达水平明显下降。而N2a细胞染毒后PAF-AH基因表达水平明显上升,染毒48h后胞内PAF浓度明显下降。本研究首次将PAF与流感病毒性脑病联系在一起,提示PAF可能参与流感病毒性脑病的致病过程,可作为治疗的药物靶点进行后续研究。  相似文献   

10.
TIR domain-containing adaptor protein (TRIF) is an adaptor protein in Toll-like receptor (TLR) signaling pathways. Activation of TRIF leads to the activation of interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-κB). While studies have shown that TLRs are implicated in cerebral ischemia/reperfusion (I/R) injury and in neuroprotection against ischemia afforded by preconditioning, little is known about TRIF’s role in the pathological process following cerebral I/R. The present study investigated the role that TRIF may play in acute cerebral I/R injury. In a mouse model of cerebral I/R induced by transient middle cerebral artery occlusion, we examined the activation of NF-κB and IRF3 signaling in ischemic cerebral tissue using ELISA and Western blots. Neurological function and cerebral infarct size were also evaluated 24 h after cerebral I/R. NF-κB activity and phosphorylation of the inhibitor of kappa B (IκBα) increased in ischemic brains, but IRF3, inhibitor of κB kinase complex-ε (IKKε), and TANK-binding kinase1 (TBK1) were not activated after cerebral I/R in wild-type (WT) mice. Interestingly, TRIF deficit did not inhibit NF-κB activity or p-IκBα induced by cerebral I/R. Moreover, although cerebral I/R induced neurological and functional impairments and brain infarction in WT mice, the deficits were not improved and brain infarct size was not reduced in TRIF knockout mice compared to WT mice. Our results demonstrate that the TRIF-dependent signaling pathway is not required for the activation of NF-κB signaling and brain injury after acute cerebral I/R.  相似文献   

11.
12.
13.
Min JH  Wilder C  Aoki J  Arai H  Inoue K  Paul L  Gelb MH 《Biochemistry》2001,40(15):4539-4549
Platelet-activating factor acetylhydrolases (PAF-AHs) are a group of enzymes that hydrolyze the sn-2 acetyl ester of PAF (phospholipase A(2) activity) but not phospholipids with two long fatty acyl groups. Our previous studies showed that membrane-bound human plasma PAF-AH (pPAF-AH) accesses its substrate only from the aqueous phase, which raises the possibility that this enzyme can hydrolyze a variety of lipid esters that are partially soluble in the aqueous phase. Here we show that pPAF-AH has broad substrate specificity in that it hydrolyzes short-chain diacylglycerols, triacylglycerols, and acetylated alkanols, and displays phospholipase A(1) activity. On the basis of all of the substrate specificity results, it appears that the minimal structural requirement for a good pPAF-AH substrate is the portion of a glyceride derivative that includes an sn-2 ester and a reasonably hydrophobic chain in the position occupied by the sn-1 chain. In vivo, pPAF-AH is bound to high and low density lipoproteins, and we show that the apparent maximal velocity for this enzyme is not influenced by lipoprotein binding and that the enzyme hydrolyzes tributyroylglycerol as well as the recombinant pPAF-AH does. Broad substrate specificity is also observed for the structurally homologous PAF-AH which occurs intracellularly [PAF-AH(II)] as well as for the PAF-AH from the lower eukaryote Physarum polycephalum although pPAF-AH and PAF-AH(II) tolerate the removal of the sn-3 headgroup better than the PAF-AH from P. polycephalum does. In contrast, the intracellular PAF-AH found in mammalian brain [PAF-AH(Ib) alpha 1/alpha 1 and alpha 2/alpha 2 homodimers] is more selectively operative on compounds with a short acetyl chain although this enzyme also displays significant phospholipase A(1) activity.  相似文献   

14.
15.
16.
It has been known that the phosphorylation of the regulatory light chain, residing at the head/rod junction of the molecule activates the motor activity of smooth muscle and non-muscle conventional myosin (myosin II), and triggers a large conformational change of the molecule from the inhibited folded conformation to the active extended conformation. Recent structural analysis has revealed the structural basis of the inhibition of the motor function of the two heads in the inhibited conformation. On the other hand, recent studies have revealed that a processive unconventional myosin, myosin V, also shows a large change in the conformation from the folded to an extended form and this explains the activation mechanism of myosin V motor activity. These findings suggest the presence of a common scenario for the regulation of motor protein functions.  相似文献   

17.
18.
The mammalian intracellular brain platelet-activating factor acetylhydrolase, implicated in the development of cerebral cortex, is a member of the phospholipase A2 superfamily. It is made up of a homodimer of the 45 kDa LIS1 protein (a product of the causative gene for type I lissencephaly) and a pair of homologous 26-kDa alpha-subunits which account for all the catalytic activity. LIS1 is hypothesized to regulate nuclear movement in migrating neurons through interactions with the cytoskeleton, while the alpha-subunits, whose structure is known, contain a trypsin-like triad within the framework of a unique tertiary fold. The physiological significance of the association of the two types of subunits is not known. In an effort to better understand the function of the complex we turned to genomic data mining in search of related proteins in lower eukaryotes. We found that the Drosophila melanogaster genome contains homologs of both alpha- and beta-subunits, and we cloned both genes. The alpha-subunit homolog has been overexpressed, purified and crystallized. It lacks two of the three active-site residues and, consequently, is catalytically inactive against PAF-AH (Ib) substrates. Our study shows that the beta-subunit homolog is highly conserved from Drosophila to mammals and is able to interact with the mammalian alpha-subunits but is unable to interact with the Drosophila alpha-subunit. Proteins 2000;39:1-8.  相似文献   

19.
Nuclear migration depends on microtubules, the dynein motor complex, and regulatory components like LIS1 and NUDC. We sought to identify new binding partners of the fungal LIS1 homolog NUDF to clarify its function in dynein regulation. We therefore analyzed the association between NUDF and NUDC in Aspergillus nidulans. NUDF and NUDC directly interacted in yeast two-hybrid experiments via NUDF's WD40 domain. NUDC-green fluorescent protein (NUDC-GFP) was localized to immobile dots in the cytoplasm and at the hyphal cortex, some of which were spindle pole bodies (SPBs). We showed by bimolecular fluorescence complementation microscopy that NUDC directly interacted with NUDF at SPBs at different stages of the cell cycle. Applying tandem affinity purification, we isolated the NUDF-associated protein BNFA (for binding to NUDF). BNFA was dispensable for growth and for nuclear migration. GFP-BNFA fusions localized to SPBs at different stages of the cell cycle. This localization depended on NUDF, since the loss of NUDF resulted in the cytoplasmic accumulation of BNFA. BNFA did not bind to NUDC in a yeast two-hybrid assay. These results show that the conserved NUDF and NUDC proteins play a concerted role at SPBs at different stages of the cell cycle and that NUDF recruits additional proteins specifically to the dynein complex at SPBs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号