首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The threespine stickleback,Gasterosteus aculeatus, is polymorphic for the arrangement of lateral bony plates. It is confirmed in this paper that four morphs (not three) should be distinguished in this species: low plated, low plated with a keel, partially plated and completely plated. A new model is proposed to explain the inheritance of these morphs which involves one major gene with three alleles displaying a dominance hierarchy withA (completely plated) dominant toa (low plated) which is dominant toa k (low plated with keel). The dominance of theA allele is modified to semidominance by a dominant alleleC at a second locus. This scheme explains all the results of relevant breeding experiments published so far. Field data also fulfill predictions derived from this model.  相似文献   

2.
Summary The pineal complex of the three-spined stickleback (Gasterosteus aculeatus L.) was investigated by light and electron microscopy, as well as fluorescence histochemistry for demonstration of catecholamines and indolamines. The pineal complex of the stickleback consists of a pineal organ and a small parapineal organ situated on the left side of the pineal stalk. The pineal organ, including the entire stalk, is comprised mainly of ependymal-type interstitial cells and photoreceptor cells with well-developed outer segments. Both unmyelinated and myelinated nerve fibres are present in the pineal organ. Nerve tracts from the stalk enter the habenular and posterior commissures. A small bundle of nerve fibres connects the parapineal organ and the left habenular body. The presence of indolamines (5-HTP, 5-HT) was demonstrated in cell bodies of both the pineal body and the pineal stalk, and catecholaminergic nerve fibres surround the pineal complex.  相似文献   

3.
4.
Lateral plate evolution in the threespine stickleback: getting nowhere fast   总被引:3,自引:1,他引:3  
Bell  Michael A. 《Genetica》2001,(1):445-461
Gasterosteus aculeatus is a small Holarctic fish with marine, anadromous, and freshwater populations. Marine and anadromous populations apparently have changed little in the past 10 million years and exhibit limited geographical variation. In contrast, freshwater isolates have been founded repeatedly by marine and anadromous populations, and post-glacial isolates have undergone extraordinary adaptive radiation. Stickleback traits that have diversified during post-glacial radiation, including the lateral plates (LP), can evolve substantially within decades after colonization of fresh water or when the environment (particularly predation regime) changes. Although highly divergent freshwater isolates of G. aculeatus have existed for at least 10 million years, they have rarely experienced sustained evolutionary divergence leading to formation of widespread, phenotypically distinct species. The paradox of rapid LP evolution without sustained divergence has resulted from selective extinction of highly divergent populations, because they are specialized for conditions in small, isolated habitats that tend to dry up within limited periods. Biological species of G. aculeatus may also evolve within decades, and are also prone to extinction because they are endemic to and specialized for small, ephemeral habitats. The high rate of evolution observed in contemporary threespine stickleback populations may not be unique to this species complex and has important implications for use of post-glacial populations in comparative studies, speciation rate, and discrimination of sympatric and allopatric speciation.  相似文献   

5.
Summary The occurrence of microbodies in the epithelial cells of the intestine and gallbladder of the stickleback, Gasterosteus aculeatus L., is described. In the intestine the organelles are predominantly located in the apical and perinuclear zone of the cells and may contain small crystalline cores. In gallbladder epithelial cells the microbodies are distributed randomly. The latter organelles are characterized by the presence of large crystalloids. Cytochemical and biochemical experiments show that catalase and D-amino acid oxidase are main matrix components of the microbodies in both the intestinal and gallbladder epithelia. These organelles therefore are considered peroxisomes. In addition, in intestinal mucosa but not in gallbladder epithelium a low activity of palmitoyl CoA oxidase was detected biochemically. Urate oxidase and L- hydroxy acid oxidase activities could not be demonstrated.  相似文献   

6.
Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24–35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.  相似文献   

7.
Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers.  相似文献   

8.
We examined the affect of handling on reproductive signal expression in male threespine stickleback, Gasterosteus aculeatus. Spectrophotometric techniques have become popular methods for measuring fish color, but the measurements require handling of the subjects in order to make measurements. Fish can undergo rapid physiological color change in response to stress. As such, handling fish may induce color changes and measured colour may not be representative of signal appearance under non-stressful conditions. We measured the reflectance characteristics of the opercular, ventro-lateral and dorso-lateral areas of 41 reproductive males from Hotel Lake, BC, Canada using spectroradiometry immediately upon capture and again at 2, 3, 4, 5, 10, 15, and 20 min post-capture. Repeated measures ANOVA revealed that post-capture handling did not affect opercular or ventro-lateral reflectance characteristics over the 20 min period. However, we did observe a change in dorso-lateral reflectance characteristics of parental males over the experiment. The results of our study show that handling does not influence reflective properties of two key components of stickleback reproductive signals during a time frame that is reasonable for taking field measurements of signal color.  相似文献   

9.
Summary The olfactory epithelium of the three-spined stickleback (Gasterosteus aculeatus) and the nine-spined stickleback (Pungitius pungitius) has been studied with a conventional histochemical and a novel immunological staining technique. In both species, the sensory epithelium is arranged in folds separated by non-sensory epithelial tissue. In the nine-spined stickleback, intrinsic folds consisting of non-sensory cells are found in the apical part of the sensory epithelium where they divide the surface of the sensory epithelium into small islets. These non-sensory cells are non-ciliated, flattened and piled on top of each other; they contain numerous electron-translucent vesicles. The intrinsic folds are absent from the sensory epithelium of the three-spined stickleback. In both species, axons of receptor cells form a layer of fibers in the sensory epithelium immediately above the basal cells. In the three-spined stickleback, thick branches of the olfactory nerve are frequently found in this layer. These branches are only occasionally observed in the sensory epithelium of the nine-spined stickleback. Thus, the three-spined stickleback and the nine-spined stickleback show considerable differences in the organization of the sensory regions of the olfactory epithelium.  相似文献   

10.
Icelandic threespine sticklebacks show parallel sympatric morphological differences related to different substrate habitats in four Icelandic lakes. The level of morphological diversification varies among the lakes, ranging from a population with a wide morphological distribution to a population with clear resource morphs, where morphological diversification was reflected in diet differences. These differences in morphological divergence are closely related to the differences in the ecological surroundings of each population. This appears to be resource polymorphism, which may lead to population differentiation and speciation. Trophically related sexual dimorphism was also common in these sticklebacks, which is possibly the result of sexual selection or habitat segregation by the sexes. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 247–257.  相似文献   

11.
Radioimmunoassay (RIA) studies on highperformance liquid chromatography (HPLC) fractions of brain extracts of the three-spined stickleback, Gasterosteus aculeatus, provided evidence for at least two forms of gonadotropin-releasing hormone (GnRH). One form showed chromatographic and immunological properties similar to that of synthetic salmon GnRH (sGnRH). A second, unidentified form of GnRH eluted in the same position as chicken GnRH I (cGnRH-I); however, it did not cross-react in a cGnRH-I RIA. Furthermore, it cannot be excluded that chicken GnRH II (cGnRH-II) and maybe one other unidentified form are present in the stickleback. The distribution of GnRH in the brain of breeding adult male sticklebacks was studied by use of immunohistochemistry. Two antisera against sGnRH and antisera against mGnRH and cGnRH-II were applied on cryosections and visualized using the peroxidase-antiperoxidase method. Staining patterns were similar after incubations with all four antisera. Immunoreactive fibers were found in most parts of the brain. Three distinct groups of GnRH-immunoreactive perikarya were found in the nucleus olfactoretinalis, in the nucleus anterior periventricularis, and in the nucleus lateralis tuberis. Moreover, weakly stained cells occurred in a periventricular position in the midbrain. The proximal pars distalis of the pituitary, housing the gonadotropic cells, was richly innervated by GnRH-positive fibers. In the pars intermedia and in the rostral pars distalis, immunoreactive fibers were absent.  相似文献   

12.
To examine the influence of the spectral characteristics of underwater light on spectral sensitivity of the ON and OFF visual pathways, compound action potential recordings were made from retinal ganglion cells of threespine stickleback from different photic regimes. In fish from a red-shifted photic regime (P50 680 nm for downwelling light at 1m), peak sensitivity of both the ON and OFF pathways was limited to long wavelength light (max 600–620). In contrast, the ON pathway of fish from a comparatively blue-shifted (P50 566 nm) photic regime exhibited sensitivity to medium (max 540–560) and long (max 600 nm) wavelengths, while the OFF pathway exhibited peak sensitivity to only medium (max 540 nm) wavelength light. In a third population, where the the ambient light is moderately red-shifted (P50 629 nm), the ON pathway once again exhibited only a long wavelength sensitivity peak at 620 nm, while the OFF pathway exhibited sensitivity to both medium (max 560 nm) and long (max 600–620 nm) wavelength light. These findings suggest that the photic environment plays an integral role in shaping spectral sensitivity of the ON and OFF pathways.  相似文献   

13.
Synopsis Migratory fishes should exhibit higher growth rates and larger body size than nonmigrants. To test this hypothesis, laboratory reared threespine sticklebacks,Gasterosteus aculeatus, representing three populations from a single drainage in northern California, U.S.A. were compared. These populations differ in their migratory patterns, ranging from highly migratory anadromous forms to nonmigratory freshwater residents. The nonmigratory inland population was significantly smaller in standard length at most ages, with correspondingly reduced growth rates compared to the more migratory upstream and estuary populations. Von Bertalanffy growth functions described the growth trajectories of these fish well, accounting for approximately 99% of the variance in body size exhibited by these populations. Broad sense heritability estimates for body size were significant for all three populations at age 60 days but were significant only for the inland population at later ages. The results of this study provide evidence of genetically-based variation in growth rate and body size among these stickleback populations, and these differences are consistent with the hypothesis that adaptation to different migratory lifestyles has occurred.  相似文献   

14.
15.
T Leinonen  J M Cano  J Meril? 《Heredity》2011,106(2):218-227
Sexual dimorphism (SD) in morphological, behavioural and physiological features is common, but the genetics of SD in the wild has seldom been studied in detail. We investigated the genetic basis of SD in morphological traits of threespine stickleback (Gasterosteus aculeatus) by conducting a large breeding experiment with fish from an ancestral marine population that acts as a source of morphological variation. We also examined the patterns of SD in a set of 38 wild populations from different habitats to investigate the relationship between the genetic architecture of SD of the marine ancestral population in relation to variation within and among natural populations. The results show that genetic architecture in terms of heritabilities, additive genetic variances and covariances (as well as correlations) is very similar in the two sexes in spite of the fact that many of the traits express significant SD. Furthermore, population differences in threespine stickleback body shape and armour SD appear to have evolved despite constraints imposed by genetic architecture. This implies that constraints for the evolution of SD imposed by strong genetic correlations are not as severe and absolute as commonly thought.  相似文献   

16.
Summary In Crystal Lake, British Columbia, small fry (15 mm SL) of the threespine stickleback (Gasterosteus aculeatus) are concentrated in vegetation while larger fry are not. Because fry in all size classes feed primarily on zooplankton, even when in vegetation, we hypothesized that size-limited predation was responsible for the observed shift in habitat use with size. The major predators on fry in Crystal Lake are adult threespine stickleback, the water scorpion, Ranatra sp. (Hemiptera: Nepidae), backswimmers, Notonecta spp. (Hemiptera: Notonectidae), and dragonfly naiads of the genus Aeshna (Odonata: Aeschnidae). On the basis of distribution and hunting behavior we excluded the insects Ranatra sp., and Notonecta sp. as causal agents for this shift in resource by fry in water >0.25 m deep. Ranatra was found almost exclusively near the shoreline in water <0.25 m deep, and both insects hunted primarily as ambush predators within vegetation. Such predators seemed more likely to drive vulnerable fry from vegetation than to restrict them to it. In contrast, Aeshna naiads and adult stickleback frequently hunted outside of vegetation. In prey preference experiments the naiads did not show the decline in predation efficiency on fry >15 mm SL that would be expected if size-limited predation by this insect was responsible for the observed shift in resource use by fry. Adult stickleback only fed on fry <15 mm SL, and in an experimental situation, consumed fry at a rate 10 times greater than that exhibited by any of the insects. Predation experiments demonstrated that small fry (11–15 mm) spent more time in vegetation in the presence of adult conspecifics than they did in control pools, as would be expected if size-limited cannibalism caused small, vulnerable fry to be restricted to vegetation. Fry >15 mm SL were found outside of vegetation more often than in control treatments. The probable cause of this result is that adults become aggressive toward fry at this size, and often could be seen chasing large fry from vegetation during the experiments. Dragonfly naiads (Aeshna spp.) spent most of their time in vegetation in the experimental pools. Both size classes of fry spent less time in vegetation in the presence of dragonfly naiads than they did in control treatments, an apparent reflection of their similar vulnerabilities to these naiads. The presence of vegetation in pools reduced predation rates by adult stickleback on small fry. Because the experiments presented here indicate that fry are capable of rapidly assessing predation risk and of altering their behavior adaptively, we conclude that small fry occupy vegetation as a refuge from cannibalism. Once fry have reached the size-threshold at which they are no longer vulnerable to adult conspecifics they are able to forage farther from vegetation thereby reducing risk of predation by insects in vegetation and possibly acquiring more abundant food resources.  相似文献   

17.
We compared the colour patterns of free swimming, reproductively active male threespine stickleback Gasterosteus aculeatus of the anadromous and stream ecotypes from three geographically distinct regions. Consistent with the hypothesis of environmentally mediated selection, our results indicate ecologically replicated differences in G. aculeatus coloration between anadromous and stream-resident populations, and that G. aculeatus probably have the visual acuity to discriminate colour pattern differences between anadromous and stream-resident fish.  相似文献   

18.
近期引入到新环境中的种群给我们提供了一个推论种群过去微进化变化的难得的机会,而这些变化曾导致了种群在历史上对新栖息地拓殖的适应。自从1967年三刺鱼(GasterosteusaculeatusL.)被有意引入到不列颠哥伦比亚的Heisholt湖后,就隔离的淡水对其完全骨板化(CP)变体的相对适合度的影响已经做过多种多样的测定。CP变体的个体在早期的样本中比较常见(占20.3%-31.7%),而在现代的样本中比较稀少(占0%-5.0%)。后者样本中骨板弱化的变体占优势,这是绝大多数淡水种群的典型情形。我估测Heisholt湖的一个流域中三刺鱼体侧骨板数目从1974年到1997年的进化速率是-0.029海尔登,这比大多数对近期引入的或隔离的三刺鱼种群的现时进化的估测要低。最后,来自于Heisholt湖的CP个体比那些作为引入源溪流中的个体明显要小。总之,对应于已建群的自然淡水种群的文献资料,在引入种群中所观察到的个体大小和体侧骨板数目的变化,意味着三刺鱼对与淡水环境中生活相关的多种挑战的适应可以快速发生。  相似文献   

19.
20.
Gonadal sex differentiation is increasingly recognized as a remarkably plastic process driven by species‐specific genetic or environmental determinants. Among aquatic vertebrates, gonadal sex differentiation is a frequent endpoint in studies of endocrine disruption with little appreciation of underlying developmental mechanisms. Work in model organisms has highlighted the diversity of master sex‐determining genes rather than uncovering any broad similarities prompting the highly conserved developmental decision of testes versus ovaries. Here we use molecular genetic markers of chromosomal sex combined with traditional histology to examine the transition of the bipotential gonads to ovaries or testes in threespine stickleback (Gasterosteus aculeatus). Serially‐sectioned threespine stickleback fry were analyzed for qualitative and quantitative indications of sexual differentiation, including changes in gonadal morphology, number of germ cells and the incidence of gonadal apoptosis. We show that threespine stickleback sampled from anadromous and lacustrine populations are differentiated gonochorists. The earliest sex‐specific event is a premeiotic increase in primordial germ cell number followed by a female‐specific spike in apoptosis in the undifferentiated gonad of genetic females. The data suggest that an increase in PGC number may direct the undifferentiated gonad toward ovarian differentiation. J. Morphol., 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号