首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The establishment of human chromosomal regions as distinct and characteristic domains has been demonstrated by the reproducible banding patterns observed on metaphase chromosomes as a result of various staining techniques. Although the exact molecular properties responsible for the patterns are not well understood, a general correlation has been established between the time of replication of a particular region of DNA and its banding characteristics. Using a replication timing assay based on fluorescence in situ hybridization patterns, we investigated replication timing properties across chromosomal regions with potentially distinct chromatin properties. Relative replication timing values were determined using cosmid DNA probes around the pseudoautosomal region boundary in Xp22.3 and the cytogenetic band boundary regions surrounding Xp22.2. Although we observed replication timing domains that were generally consistent with cytogenetic banding patterns, we did not find sharp replication timing boundaries at either the pseudoautosomal region boundary or at the cytogenetic band boundaries. Received: 6 September 1997; in revised form: 16 December 1997 / Accepted: 5 January 1998  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
Effects of tethering HP1 to euchromatic regions of the Drosophila genome   总被引:7,自引:0,他引:7  
Heterochromatin protein 1 (HP1) is a conserved non-histone chromosomal protein enriched in heterochromatin. On Drosophila polytene chromosomes, HP1 localizes to centric and telomeric regions, along the fourth chromosome, and to specific sites within euchromatin. HP1 associates with centric regions through an interaction with methylated lysine nine of histone H3, a modification generated by the histone methyltransferase SU(VAR)3-9. This association correlates with a closed chromatin configuration and silencing of euchromatic genes positioned near heterochromatin. To determine whether HP1 is sufficient to nucleate the formation of silent chromatin at non-centric locations, HP1 was tethered to sites within euchromatic regions of Drosophila chromosomes. At 25 out of 26 sites tested, tethered HP1 caused silencing of a nearby reporter gene. The site that did not support silencing was upstream of an active gene, suggesting that the local chromatin environment did not support the formation of silent chromatin. Silencing correlated with the formation of ectopic fibers between the site of tethered HP1 and other chromosomal sites, some containing HP1. The ability of HP1 to bring distant chromosomal sites into proximity with each other suggests a mechanism for chromatin packaging. Silencing was not dependent on SU(VAR)3-9 dosage, suggesting a bypass of the requirement for histone methylation.  相似文献   

10.
BackgroundEpigenetic changes are being increasingly recognized as a prominent feature of cancer. This occurs not only at individual genes, but also over larger chromosomal domains. To investigate this, we set out to identify large chromosomal domains of epigenetic dysregulation in breast cancers.ResultsWe identify large regions of coordinate down-regulation of gene expression, and other regions of coordinate activation, in breast cancers and show that these regions are linked to tumor subtype. In particular we show that a group of coordinately regulated regions are expressed in luminal, estrogen-receptor positive breast tumors and cell lines. For one of these regions of coordinate gene activation, we show that regional epigenetic regulation is accompanied by visible unfolding of large-scale chromatin structure and a repositioning of the region within the nucleus. In MCF7 cells, we show that this depends on the presence of estrogen.ConclusionsOur data suggest that the liganded estrogen receptor is linked to long-range changes in higher-order chromatin organization and epigenetic dysregulation in cancer. This may suggest that as well as drugs targeting histone modifications, it will be valuable to investigate the inhibition of protein complexes involved in chromatin folding in cancer cells.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0719-9) contains supplementary material, which is available to authorized users.  相似文献   

11.
12.
Sequence data of entire eukaryotic genomes and their detailed comparison have provided new evidence on genome evolution. The major mechanisms involved in the increase of genome sizes are polyploidization and gene duplication.Subsequent gene silencing or mutations, preferentially in regulatory sequences of genes, modify the genome and permit the development of genes with new properties. Mechanisms such as lateral gene transfer, exon shuffling or the creation of new genes by transposition contribute to the evolution of a genome, but remain of relatively restricted relevance.Mechanisms to decrease genome sizes and, in particular, to remove specific DNA sequences, such as blocks of satellite DNAs, appear to involve the action of RNA interference (RNAi). RNAi mechanisms have been proven to be involved in chromatin packaging related with gene inactivation as well as in DNA excision during the macronucleus development in ciliates.  相似文献   

13.
Chromatin proteins provide a scaffold for DNA packaging and a basis for epigenetic regulation and genomic maintenance. Despite understanding its functional roles, mapping the chromatin proteome (i.e. the "Chromatome") is still a continuing process. Here, we assess the biological specificity and proteomic extent of three distinct chromatin preparations by identifying proteins in selected chromatin-enriched fractions using mass spectrometry-based proteomics. These experiments allowed us to produce a chromatin catalog, including several proteins ranging from highly abundant histone proteins to less abundant members of different chromatin machinery complexes. Using a Normalized Spectral Abundance Factor approach, we quantified relative abundances of the proteins across the chromatin enriched fractions giving a glimpse into their chromosomal abundance. The large-scale data sets also allowed for the discovery of a variety of novel post-translational modifications on the identified chromatin proteins. With these comparisons, we find one of the probed methods to be qualitatively superior in specificity for chromatin proteins, but inferior in proteomic extent, evidencing a compromise that must be made between biological specificity and broadness of characterization. Additionally, we attempt to identify proteins in eu- and heterochromatin, verifying the enrichments by characterizing the post-translational modifications detected on histone proteins from these chromatin regions. In summary, our results provide insights into the value of different methods to extract chromatin-associated proteins and provide starting points to study the factors that may be involved in directing gene expression and other chromatin-related processes.  相似文献   

14.
Chromatin cross-linking is widely used for mapping the distribution of chromosomal proteins by immunoprecipitation, but our knowledge of the physical properties of chromatin complexes remains rudimentary. Density gradients have been long used to separate fragments of cross-linked chromatin with their bound proteins from free protein or free DNA. We find that the association of DNA fragments with very-high-molecular-weight protein complexes shifts their buoyant density to values much lower then that of bulk chromatin. We show that in a CsCl gradient, Polycomb response elements, promoters of active genes, and insulator or boundary elements are found at buoyant densities similar to those of free protein and are depleted from the bulk chromatin fractions. In these regions, the low density is associated with the presence of large protein complexes and with high sensitivity to sonication. Our results suggest that separation of different chromatin regions according to their buoyant density may bias chromatin immunoprecipitation results. Density centrifugation of cross-linked chromatin may provide a simple approach to investigate the properties of large chromatin complexes in vivo.  相似文献   

15.
Transcriptional transgene silencing and chromatin components   总被引:19,自引:0,他引:19  
  相似文献   

16.
The current understanding of chromatin-mediated repression in Metazoa stems largely from work on two systems in Drosophila: heterochromatin-induced position-effect variegation and repression of the homeotic genes by the Polycomb-group of genes. A common feature of these two systems is the cooperative assembly of multimeric complexes which can epigenetically silence gene activity. Moreover, both older and more recent work has suggested that these complexes can themselves associate to give rise to larger complexes: The specificity of the association is likely to be determined by complementarity of the structural components of the complexes. Here, we aim to accommodate these, and other, features of chromatin-mediated repression in a single hypothesis, namely the crystallisation hypothesis. This hypothesis views the nucleus as being an environment that favours the formation of chromatin complexes which behave as aperiodic microcrystalline arrays constructed through the cooperative assembly of different types of lattice unit. The lattice units possess regions of structural complementarity that allow interactions between complexes. Aperiodicity confers specificity on the complexes and is a key feature of the model which, we suggest, provides a gene with a “chromosomal address.” The chromosomal address allows the side-by-side alignment of homologous chromosomal regions, a property that may be important in a variety of biologically relevant situations. Aperiodicity is also a feature of the hypothesis that is directly testable. Dev. Genet. 22:85–99, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Fragile sites still breaking   总被引:11,自引:0,他引:11  
Rare fragile sites on chromosomes are the archetypal dynamic mutations. They involve large expansions of the microsatellite CCG or AT-rich minisatellites. The mutation process is an increase in repeat-unit number from within a normal range, through a premutation range, up to full mutation where the fragile site is expressed. Full mutations can inactivate genes and are regions of genomic instability. Common fragile sites, in particular, might have a role in oncogenesis by facilitating gene inactivation through chromosomal deletion or amplification, but this requires further exploration. The mechanisms behind the changes that give rise to the cytogenetic manifestation of chromosomal fragility are now beginning to be understood.  相似文献   

18.
Human chromosomes prepared according to routine methods were treated with the restriction endonuclease Alu I followed by staining with Giemsa solution or fluorescent dyes. This procedure results in a C-band-like appearance of the chromosomes due to removal of DNA from euchromatic chromosomal regions. The resistance of heterochromatic regions against cleavage by the enzyme has mainly been interpreted by the absence or rareness of recognition sites for this particular enzyme in these regions. Proteinase K pretreatment followed by a nick translation procedure with Alu I was combined to check this hypothesis. The results show that heterochromatic chromosomal regions can also be labelled. Thus, they are not characterized by a lack of recognition sites. Gradual deproteinisation of chromosomes changes the labelling pattern from a reverse C-banding pattern to a C-band-like appearance. The resistance of heterochromatic chromosomal parts revealed by the technique is mainly due to local chromatin configuration rather than to the underlying DNA sequence itself.  相似文献   

19.
Functional noncoding RNAs have distinct roles in epigenetic gene regulation. Large RNAs have been shown to control gene expression from a single locus (Tsix RNA), from chromosomal regions (Air RNA), and from entire chromosomes (roX and Xist RNAs). These RNAs regulate genes in cis; although the Drosophila roX RNAs can also function in trans. The chromatin modifications mediated by these RNAs can increase or decrease gene expression. These results suggest that the primary role of RNA molecules in epigenetic gene regulation is to restrict chromatin modifications to particular regions of the genome. However, given that RNA has been shown to be at the catalytic core of other ribonucleoprotein complexes, it is also possible that RNA also plays a role in modulating changes in chromatin structure.  相似文献   

20.
A common cytogenetic finding in both Q-banded and solid Giemsa-stained preparations of pronuclear chromosomes obtained from cross-species fertilization of hamster oocytes by human sperm is the presence of a variable-length "gap" in the centromeric region. Scanning electron microscopy was used to investigate these altered chromosomal regions. The centromere in most eukaryotic organisms appears as a constricted region approximately 200-300 nm in diameter. In contrast, the gap portion of the centromeric region of pronuclear chromosomes was found to contain a chromatin fiber with a diameter of 80-150 nm. The detection of this fiber confirms that the chromosome arms are continuous, and the size of the fiber explains the gap appearance in the light photomicrographs. The morphology of the fiber is consistent with the concept that the normal chromatin packaging has been altered in varied regions within the centromere of these chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号