首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Growth and physiological responses of date palm. Phoenix dactylifera L. cv. Barhee, callus to salinity stress were examined. Callus induced from shoot tips of offshoots was cultured on Murashige and Skoog medium supplemented with NaCl at concentrations ranging from 0 to 225 mM, in consective increments of 25 mM. Data obtained after 6 wk of exposure to salt have shown a significant increase in callus proliferation in response to 25 mM NaCl the lowest level tested, beyond which callus weight decreased. At 125 mM NaCl and higher, callus growth was nearly completely inhibited. Physiological studies on callus exposed to salt stress have shown an increase in proline accumulation in response to increased salinity. Proline accumulation was correlated to callus growth inhibition. Furthermore, increasing the concentration of NaCl in the culture medium generally resulted in a steady increase in Na+ and reduction in K+ concentrations. However, at 25 mM NaCl, the only level at which callus growth was significantly enhanced, an increase in K+ content was noted, in comparison to the NaCl free control. In response to increasing external NaCl level, the Na+/K+ ratio increased The Na+/K+ ratio was positively correlated to proline accumulation and hence callus growth inhibition. This study provides, an understanding of the response of date palm callus to salinity, which is important for future studies aimed at developing strategies for selecting and characterizing somaclonal variants tolerant to salt stress.  相似文献   

2.
The nitrogenase enzyme complex of Methanosarcina barkeri 227 was found to be more sensitive to NaCl than previously studied molybdenum nitrogenases are, with total inhibition of activity occurring at 190 mM NaCl, compared with >600 mM NaCl for Azotobacter vinelandii and Clostridium pasteurianum nitrogenases. Na+ and K+ had equivalent effects, whereas Mg2+ was more inhibitory than either monovalent cation, even on a per-charge basis. The anion Cl- was more inhibitory than acetate was. Because M. barkeri 227 is a facultative halophile, we examined the effects of external salt on growth and diazotrophy and found that inhibition of growth was not greater with N2 than with NH4+. Cells grown with N2 and cells grown with NH4+ produced equal concentrations of alpha-glutamate at low salt concentrations and equal concentrations of Nepsilon-acetyl-beta-lysine at NaCl concentrations greater than 500 mM. Despite the high energetic cost of fixing nitrogen for these osmolytes, we obtained no evidence that there is a shift towards nonnitrogenous osmolytes during diazotrophic growth. In vitro nitrogenase enzyme assays showed that at a low concentration (approximately 100 mM) potassium glutamate enhanced activity but at higher concentrations this compound inhibited activity; 50% inhibition occurred at a potassium glutamate concentration of approximately 400 mM.  相似文献   

3.
Abstract

Salt stress is one of the major environmental factors limiting crop growth and yield. To understand the effect of salt stress on plant growth, we investigated the response of three perilla varieties (Suyin 1, Ziye 7, and Ziye 10) to NaC1 exposure at concentrations of 0, 50, 100, 150, 200, and 250 mM in terms of seed germination, seedling growth, root activity, contents of soluble sugar, proline, and malondialdehyde (MDA), and peroxidase (POD) enzyme activity. Germination characteristics, such as the percentage of seed germination, tended to decrease with increasing NaC1 concentrations. After three weeks of salt stress, the three varieties exhibited different salt tolerance in terms of seed germination, seedling growth, and physiological changes: seedling growth was inhibited to various degrees, seedling vigor and root activities decreased, and MDA, proline, and soluble sugar contents increased with increasing NaCl concentrations. POD enzyme activity, a protective mechanism against salt stress, increased at low NaC1 concentrations in Suyin1 (0–150 mM) and Ziye 7 (0–100 mM), and then decreased at higher NaCl concentrations. In Ziye 10, on the other hand, POD activity dropped significantly with increasing NaCl concentrations. These results suggest that among the three varieties Suyin 1 is more salt tolerant than Ziye 7 and Ziye 10, and that Ziye 10 is the most sensitive to salt stress.  相似文献   

4.
Salt-induced oxidative stress in rosemary plants: Damage or protection?   总被引:1,自引:0,他引:1  
Mechanisms of photoprotection and antioxidant protection, including changes in chlorophylls, xanthophyll cycle components and levels of low-molecular-weight chloroplastic antioxidants (lutein, β-carotene and α-tocopherol) were studied together with levels of malondialdehyde, a product of lipid peroxidation, in the response of rosemary (Rosmarinus officinalis L.) plants to salt stress. Plants were exposed to increasing NaCl concentrations (50, 100 and 150 mM) for 6 weeks, and two concentrations of the following chloride salts: KCl, CaCl2, MgCl2 and FeCl3, were used together with 100 mM NaCl to explore the extent to which these salts can alter the mechanisms of photoprotection, antioxidant protection and malondialdehyde accumulation in leaves. Increasing concentrations of NaCl decreased leaf water contents and photosynthetic pigment levels, while the contents of α-tocopherol and malondialdehyde increased, but with completely different kinetics. α-Tocopherol levels increased in a dose-dependent manner as stress progressed, while malondialdehyde levels increased at the highest dose (150 mM NaCl) but only during early phases of stress. Furthermore, although the addition of chloride salts to NaCl-treated plants apparently improved leaf physiological status, in terms of water and chlorophyll contents, plants showed an increased photoprotective demand and increased oxidative stress, particularly in FeCl3-treated plants. It is concluded that (i) rosemary plants can withstand moderate doses of NaCl in the medium (at least 150 mM NaCl for 6 weeks), (ii) oxidative stress may be a mechanism for protecting plants from moderate doses of salt stress rather than causing damage to plants, and (iii) the addition of chloride salts to NaCl-treated plants may dramatically increase the photoprotective demand and oxidative stress of leaves, while plant growth is not negatively affected.  相似文献   

5.
Ginkgo suspension cells were used to investigate the mechanism that governs the shift between primary and secondary metabolism under NaCl elicitation. The production of three flavonol glycosides, chlorophyll fluorescence, ion content, the antioxidant system, and the cellular ultrastructure in the presence of NaCl doses from 5 to 175 mM were examined. At low salt doses (5–50 mM), cell growth and flavonol glycosides accumulation were stimulated without damaging cell structure or inducing oxidative stress by maintaining high K+ and chlorophyll content. At moderate salt doses (75–125 mM), the cells could withstand the salt stress without an impact on survival by changing internal cellular structure, maintaining high levels of K+ and Ca2+ and increasing anti-oxidative enzyme activities rather than flavonol glycosides to counteract the inhibition of the photosystem II, the accumulation of Na+ and hydrogen peroxide (H2O2) in the cells. This allowed cells to divert their metabolism from growth to defense-related pathways and tolerate NaCl stress. At higher salinity (150–175 mM), the cellular structure was damaged, and the high Na+ and low K+ content led to osmotic stress, and therefore, the stimulation of peroxidase (POD) and catalase (CAT) was not enough to cope with high H2O2 accumulation. The high production of flavonol glycosides may be a response of elicitation stimulation to serious damage at 175 mM NaCl. In conclusion, the use of 175 mM NaCl may be desirable for the induction of flavonol glycoside production in Ginkgo suspension cells.  相似文献   

6.
Changes in the nuclei of meristematic root cells of soybean (Glycine max (L.) Merr. cv. Acme) in response to severe salinity were studied. Root growth was inhibited by 200 mM NaCl, when 1 mM CaCl_2 was present in the culture media. Increasing CaCl_2 up to 5 mM partially prevented this inhibition. However, inhibition also occurred with 100~mM NaCl without CaCl_2. We examined the meristematic cells under a series of NaCl treatments. Nuclear deformation of the cells occurred with 24 h of 150 mM or higher NaCl, and was followed by degradation of nuclei in the apical region of the root. TEM observation and agarose gel electrophoretic analysis confirmed that root tip nuclear DNA deformed or degraded with 150 mM or higher NaCl concentrations.  相似文献   

7.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

8.
Suaeda salsa calli treated with different concentrations of NaCl were used to examine the response of the plasma membrane (PM) H+-ATPase to NaCl and its role in salt tolerance. The optimum concentration of NaCl for growth of the calli was 50 mM, while growth was significantly inhibited at 250 mM NaCl. The ion and organic solute contents of calli increased with increasing NaCl. Activity of the PM H+-ATPase increased when the calli were treated with NaCl over a certain concentration range (0–150 mM NaCl). However, the activity reached its maximum with 150 mM NaCl. Immunoblotting analysis of the PM H+-ATPase protein from calli cultures with anti-Zea mays H+-ATPase serum (monoclonal 46E5B11D5) identified a single polypeptide of ~90 kDa. The peptide levels increased in the calli treated with NaCl at 150 mM NaCl compared to control, but the increase at 50 mM NaCl was less pronounced. Northern blot analysis showed that the expression of the PM H+-ATPase also increased after the calli were treated with NaCl. These results suggest that the increase in PM H+-ATPase activity is due to both an increase in the amount of PM H+-ATPase protein and an up-regulation of the PM H+-ATPase gene, which is involved in the salt tolerance of S. salsa calli.  相似文献   

9.
Na+ has been implicated as a requirement for the inhibition of adenylate cyclase by hormones and neurotransmitters. This study examines effects of salt concentration on neuroblastoma plasma membranes that occur in the absence of an inhibitory hormone. The adenylate cyclase response to stimulatory agonists (GTP plus PGE1 (3), PGI2 or PGE2) was influenced by NaCl. As the [NaCl] increased to 150 mM, an increase in maximal activity and a decrease in apparent affinity was observed. At concentrations above 150 mM, NaCl decreased prostaglandin affinity and progressively decreased maximal activation. The GTP requirement was not altered by 30 or 150 mM NaCl in the presence of PGE1 or PGI2. The rate of Gpp(NH)p stimulated activity increased as the [NaCl] was increased in the assay. This increased rate was conserved when membranes activated in the presence of Gpp(NH)p and NaCl were reassayed in the absence of guanine nucleotide or salt. The salt evoked rate increase was proportionally greater at submaximal MgCl2 concentrations. The concentration requirement for Mg2+ was reduced by salt for adenylate cyclase in the presence of GTP or Gpp(NH)p. However, the enzyme stimulated by hormone exhibited a Mg2+ requirement that was low in the absence of salt and could not be further reduced by increased [NaCl]. Alternative monovalent cations (150 mM Li+, K+, Cs+, but not choline or tetramethylammonium) and anions (SO4=) substituted for NaCl. The observed effects were reversible upon washing the membranes and neither ouabain nor tetrodotoxin altered the response. These effects may result from a conformational alteration of a protein particularly sensitive to neutral salts in the assay.  相似文献   

10.
Protection from salt stress was observed in the terms of yield (fresh and dry weight, chlorophyll and protein) and nitrogenase activity. Azollapinnata appeared highly sensitive to 40 mM external NaCl stress. Fronds of Azolla unable to grow beyond a concentration of 30 mM NaCl and accordingly death was recorded at 40 mM NaCl on the 6th day of incubation. Yield was inhibited by various levels of NaCl (0, 10, 20 and 30 mM). Addition of combined-N to the growth medium protected the association partially from salt toxicity. Among the N-sources (NO3-, NH4+ and urea) tried, urea mitigated the salt-induced toxicity most efficiently. Reduction in nitrogenase activity was observed when intact Azolla was grown in nutrient medium either supplemented with different levels of NaCl or combined nitrogen. Only NO3- (5 mM) protected the enzymatic activity from salt toxicity while other concentrations of ammonium, nitrate and urea slowed down the salt-induced inhibition of enzyme activity in Azolla-Anabaena association. These results suggested that an optimum protection from salt stress could be obtained by using a combination of combined nitrogen sources. The reason for this protection might be due to the availability of combined nitrogen to the association, nitrogen is only available through the biological nitrogen fixation which is the most sensitive to salt stress.  相似文献   

11.
Sucrose Metabolism in Lupinus albus L. Under Salt Stress   总被引:3,自引:0,他引:3  
Salt stress (50 and 150 mM NaCl) effects on sucrose metabolism was determined in Lupinus albus L. Sucrose synthase (SS) activity increased under salt stress and sucrose phosphate synthase activity decreased. Acid invertase activity was higher at 50 mM NaCl and decreased to control levels at 150 mM NaCl. Alkaline invertase activity increased with the salt stress. Glucose content decreased with salt stress, sucrose content was almost three times higher in plants treated with 150 mM NaCl and fructose content did not change significantly. The most significant response of lupin plants to NaCl excess is the increase of sucrose content in leaves, which is partially due to SS activity increase under salinity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.

In this study, antioxidant processes were searched for in macrophyte duckweed to investigate tolerance mechanisms in this species against oxidative damage caused by salinity stress. Biochemical and histological analyses were performed on four Lemna aequinoctialis clones grown in Schenk-Hildebrandt medium, 0.5 × SH, supplemented with 1% sucrose liquid medium containing or not containing NaCl in different NaCl concentrations (0, 25 and 50 mM). For most clones, the salt stress effects caused growth inhibition and antioxidant responses at 50 mM NaCl. Also, starch and reducing sugar accumulations were increased with salt, whereas the photosynthetic pigment content was reduced in clone L. aequinoctialis 5569. The plant growth inhibition reflects the oxidative stress shown by the significant increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. In the L. aequinoctialis 5568 clone, with the highest MDA levels, no antioxidant enzymatic activity was observed. The L. aequinoctialis 5570 clone presented higher ascorbate peroxidase and catalase activities in parallel, indicating that the efficiency of the defence mechanism relies on synchrony between such enzyme activities toward successive elimination of reactive oxygen species and resulting in the assurance of some level of protection of the metabolism from oxidative damage. Considering the moderate salt stress (25 mM), the maintenance of MDA content and small growth inhibition associated with the high starch production suggested the acclimation efficiency of L. aequinoctialis 5570 and 5567 clones, indicating that they may be suitable for cultivation under moderate saline conditions, serving as biofuel feedstock. In addition, this study demonstrates great intraspecific phenotypic plasticity of duckweed, L. aequinoctialis, from closely related clones.

  相似文献   

13.
Salt tolerant callus and cell suspension cultures of Brassica oleracea L. var. botrytis were obtained by the selection of cells from cultures growing in medium supplemented with 85, 170, and 255 mM NaCl. Salt adapted calli and cell suspensions differed in their RNA and protein concentrations. These concentrations tend to diminish in calli and increase in cell suspensions, both at one or three weeks periods of growth in NaCl. Contents of sucrose and reducing sugars, however, accumulate similarly both in calli and cell suspensions after NaCl treatments. The activity of sucrose synthase was higher in salt adapted cells than in controls. Calli exposed to 255 mM NaCl for six months synthesized a 27 kDa polypeptide, while a 13 kDa polypeptide present in control conditions was absent under salinity. Several high molecular mass polypeptides (> 200 kDa) were visualized in control calli and at moderate salt concentrations, when conditions of the gel were modified.  相似文献   

14.
Callus cultures ofArachis hypogaea L. cv. JL-24 adapted to 200 mM NaCl (otherwise lethal to cells) were used for the study. Calli grew slowly when transferred to 250 mM NaCl, but the growth was enhanced when ABA was included in the medium. ABA induced increase in growth of callus was not accompanied by corresponding increase in internal free proline levels. 0.5 mM of CaCl2 ameliorated the negative effect of NaCl indicating that cells require a specific Ca2+/Na+ ratio for their growth. Proline content also increased at this ratio thereby suggesting that increase in growth at 0.5 mM Ca2+ may be due to an increase in proline content. However, exogenous proline did not increase the growth of callus (adapted to 200 mM), and higher concentrations even inhibited the growth. This shows that proline is not required for growth or adaptation of cells to salt stress, but is produced as a consequence of stress.  相似文献   

15.
In order to gain information on the putative involvement of polyamines (PAs) in the response of rice cells to salinity, mature embryo-derived calli issued from the salt-sensitive cultivar I Kong Pao were exposed for 3 months to the simultaneous presence of NaCl (0, 150 and 300 mM) and exogenous polyamines (putrescine (Put): 1 and 10 mM; spermidine (Spd): 1 and 10 mM; spermine (Spm): 1 mM). Callus growth, endogenous PAs, Na+, K+ and Cl concentrations were quantified and analysed in relation to cell viability based on 2,3,5-triphenytetrazolium chloride (TTC) reduction. All exogenous PAs were efficiently absorbed from the external medium. Exogenous Put 1 mM clearly stimulated growth of salt-stressed calli in relation to a decrease in both Na+ and Cl accumulation. In contrast, Spd 10 mM and Spm 1 mM exacerbated the deleterious impact of NaCl on callus growth and induced a decrease in K+ concentration. While Put helped in the maintenance of cell viability, Spd 10 mM and Spm 1 mM decreased cell viability, mainly in relation to an inhibition of the alternative respiratory pathway. It is proposed that Put may assume positive functions in salt stress resistance in rice.  相似文献   

16.
17.
The present study was carried out to compare the effect of NaCl on growth, cell membrane damage, and antioxidant defences in the halophyte Crithmum maritimum L. (sea fennel). Physiological and biochemical changes were investigated under control (0 mM NaCl) and saline conditions (100 and 300 mM NaCl). Biomass and growth of roots were more sensitive to NaCl than leaves. Roots were distinguished from leaves by increased electrolyte leakage and high malondialdehyde (MDA) concentration. Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities, ascorbic acid (AA) and glutathione (GSH) concentrations were lower in the roots than in the leaves of control plants. The different activity patterns of antioxidant enzymes in response to 100 and 300 mM NaCl indicated that leaves and roots reacted differently to salt stress. Leaf CAT, APX and glutathione reductase (GR) activities were lowest at 300 mM NaCl, but they were unaffected by 100 mM NaCl. Only SOD activity was reduced in the latter treatment. Root SOD activity was significantly decreased in response to 300 mM NaCl and root APX activity was significantly higher in plants treated with 100 and 300 mM compared to the controls. The other activities in roots were insensitive to salt. The concentration of AA decreased in leaves at 100 and 300 mM NaCl, and in roots at 300 mM NaCl, when compared to control plants. The concentrations of GSH in NaCl-treated leaves and roots were not significantly different from the controls. In both organs, AA and GSH were predominating in the total pool in ascorbic acid and glutathione, under control or saline conditions.  相似文献   

18.
Induction and growth of soybean callus cultures were influenced by NaCl, especially at the highest concentration tested (150 mM). Protein content was raised as NaCl was increased in the Murashige and Skoog medium. Total sulfhydryl group (-SH) and glutathione (GSH) concentrations were also increased in NaCl treated cultures. The affinity (Km) of glutathione reductase (GR) for oxidized glutathione (GSSG) was gradually increased as NaCl level was raised in the medium. The GSH/GSSG ratio was raised significantly as the result of GR activity. The increase in GR activity may constitute an adaptive response of soybean callus to NaCl. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Salinity tolerance and antioxidant status in cotton cultures   总被引:10,自引:0,他引:10  
This investigation focuses upon cell growth and antioxidant status in cultured cells of cotton (Gossypium herbaceum) cvs. Dhumad (salt-tolerant, TOL), H-14 (medium salt-tolerant, MED), and RAhs-2 (salt-sensitive, SEN) exposed to saline stress (50-200 mM NaCl). Mean (+/- SEM) callus fresh weight (f.wt.) and dry weight (d.wt.) gains were significantly (p <.05) greater on Murashige and Skoog (MS) [1]-based medium with 50 mM NaCl for the TOL cv. (62% and 16%, respectively) over NaCl-free controls (2020 +/- 45 and 166 +/- 4 mg, respectively); comparable differences were not observed for the MED cv. A significant (p <.05) decrease in mean f.wt. occurred with the SEN cv. exposed to 50 mM NaCl. For all cvs., there were (p <.05) reductions in mean f.wts. in medium with >or=100 mM NaCl. At 200 mM NaCl, mean f.wt. decreases were 52% (TOL), 89% (MED), and 91% (SEN), respectively. A strong correlation existed between antioxidant status and growth of cells with NaCl. Superoxide dismutase and glutathione reductase activities increased with increasing salinity in the TOL cv. to maximum values of 26.3 +/- 1.1 U mg(-1) protein and 1.05 +/- 0.01 AB(340 nm) min(-1) mg(-1) protein, respectively, at 150 mM NaCl; for the MED and SEN cvs., there were no changes in activities of these enzymes between control and salt treatments. Catalase activity decreased progressively with increasing salt concentration in all cvs. except for SEN with 100 mM NaCl, where mean catalase activity (1.75 +/- 0.04 AB(240 nm) min(-1) mg(-1) protein) was greater (p <.05) than control (1.13 +/- 0.08). Overall, cultured cotton cells provide an experimental system for investigating the role of antioxidants in salt tolerance at the cellular level.  相似文献   

20.
Adaptation to salinity of a semi-arid inhabitant plant, henna, is studied. The salt tolerance mechanisms are evaluated in the belief that gas exchange (water vapor and CO2) should play a key role on its adaptation to salt stress because of the strong evaporation conditions and soil water deficit in its natural area of distribution. We grow henna plants hydroponically under controlled climate conditions and expose them to control (0 mM NaCl), and two levels of salinity; medium (75 mM NaCl) and high (150 mM NaCl). Relative growth rate (RGR), biomass production, whole plant and leaf structure and ultrastructure adaptation, gas exchange, chlorophyll fluorescence, nutrients location in leaf tissue and its balance in the plant are studied. RGR and total biomass decreased as NaCl concentration increased in the nutrient solution. At 75 mM NaCl root biomass was not affected by salinity and RGR reached similar values to control plants at the end of the experiment. At this salinity level henna plant responded to salinity decreasing shoot to root ratio, increasing leaf specific mass (LSM) and intrinsic water use efficiency (iWUE), and accumulating high concentrations of Na+ and Cl in leaves and root. At 150 mM NaCl growth was severely reduced but plants reached the reproductive phase. At this salinity level, no further decrease in shoot to root ratio or increase in LSM was observed, but plants increased iWUE, maintaining water status and leaf and root Na+ and Cl concentrations were lower than expected. Moreover, plants at 150 mM NaCl reallocated carbon to the root at the expense of the shoot. The effective PSII quantum yield [Y(II)] and the quantum yield of non-regulated energy dissipation [Y(NO)] were recovered over time of exposure to salinity. Overall, iWUE seems to be determinant in the adaptation of henna plant to high salinity level, when morphological adaptation fails.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号