首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   

2.
线粒体为细胞正常生命活动提供物质和能量,然而各种因素会导致线粒体损伤,衰老及功能紊乱。线粒体自噬是维持细胞稳态,及时清除细胞潜在危险因素的关键过程,FUNDC1是新近发现的一种线粒体自噬受体蛋白,在介导线粒体自噬方面有重要作用。运动是激活线粒体自噬的应激条件,其诱导骨骼肌线粒体自噬及FUNDC1在此过程中的作用机制正逐步明确。本文介绍FUNDC1的结构、功能和调节,分析FUNDC1与线粒体分裂、融合、自噬的关系,探讨运动诱导线粒体自噬过程中FUNDC1的调控机制,为进一步研究提供参考依据。  相似文献   

3.
线粒体自噬     
细胞自噬(autophagy)是细胞依赖溶酶体对蛋白和细胞器进行降解的一条重要途径.目前,将通过细胞自噬降解线粒体的途径称为线粒体自噬(mitophagy).最近几年的证据表明,线粒体自噬是一个特异性的选择过程,并受到各种因子的精密调节,是细胞清除体内损伤线粒体和维持自身稳态的一种重要调节机制.自噬相关分子,如“核心”Atg 复合物,酵母线粒体外膜分子Atg32、Atg33、Uth1和Aup1,哺乳细胞线粒体外膜蛋白PINK1、NIX和胞质的Parkin等,在线粒体自噬中起关键的作用. 线粒体自噬异常与神经退行性疾病如帕金森氏病(Parkinson’s disease,PD)的发生密切相关. 本文就线粒体自噬的研究进展做简要的介绍.  相似文献   

4.
线粒体自噬是指细胞通过自噬的机制选择性地清除线粒体的过程。通过该途径,细胞可降解并清除受损或功能障碍的线粒体,以维持细胞内线粒体质量和数量的平衡,从而维持细胞稳态。在生理状态及应激状态下,多种因子可调控心肌细胞线粒体自噬,进而发挥保护心肌细胞的作用。本文就线粒体自噬及其调控机制以及其在心肌保护中的作用做一综述。  相似文献   

5.
粒体作为一个信号平台,在决定细胞命运中起着至关重要的作用。已知许多经典抗癌药物通过诱导线粒体损伤触发细胞死亡。线粒体自噬是一种选择性自噬,能够有效清除受损线粒体。然而,线粒体自噬在肿瘤发生和抗癌药物治疗中的确切作用仍不清楚。  相似文献   

6.
氧化应激下植物线粒体自噬分析   总被引:1,自引:0,他引:1  
线粒体自噬,是指通过选择性的识别并清除损伤、衰老及功能紊乱的线粒体,对维持细胞内线粒体质量和数量的平衡产生了重要作用。与动物和酵母中线粒体自噬的研究进展相比,植物线粒体自噬的途径及具体调控机制尚不明确。基于GFP标签,本文探究了氧化胁迫下植物线粒体自噬发生情况。研究发现甲基紫精诱导线粒体在液泡中积累,并呈现两种状态:1) GFP小体包含的线粒体; 2)不含GFP的线粒体。本研究发展的GFP标签策略可为植物线粒体自噬关键调控因子的筛选提供借鉴。  相似文献   

7.
线粒体自噬(mitophagy)是指细胞通过自噬机制选择性清除多余或损伤线粒体的过程,对于线粒体质量控制以及细胞生存具有重要作用。在线粒体自噬的过程中,线粒体自噬受体FUNDCl、Nix、BNIP3,接头蛋白OPTN、NDP52以及去泛素化酶UPS30、UPS8等发挥了重要的调控作用。近年来,研究发现线粒体自噬与神经退行性疾病、脑损伤以及胶质瘤相关。因此,研究线粒体自噬的分子机制具有重要意义。本文就与哺乳动物相关的线粒体自噬分子机制及最新研究进展做一综述。  相似文献   

8.
线粒体自噬作为一种选择性自噬方式是近年研究的热点。细胞通过自噬机制选择性清除受损伤或不必需的线粒体,从而维持其功能稳态。近年来,越来越多的研究聚焦于病原体通过胁迫线粒体自噬在机体感染过程中调节先天免疫信号通路,从而影响感染性疾病的进程。本文分别从线粒体自噬在病毒、细菌和真菌感染性疾病中的作用机制研究进展进行综述,以期为感染性疾病的防治提供新的指导策略。  相似文献   

9.
线粒体自噬是细胞进化过程中产生的一种通过自噬选择性清除受损线粒体的机制,及时清除损伤的线粒体对维持细胞正常生理功能具有重要作用。在阿尔茨海默症(Alzheimer′s disease,AD)患者的神经元中,当淀粉样蛋白(β-amyloid,Aβ)和微管相关蛋白(microtubule associated protein,Tau)在线粒体中积累时,轻微损伤的线粒体通过分裂融合过程,保证部分子代线粒体内部环境的稳定,而严重损伤的子代线粒体则通过被自噬体包被,进行选择性线粒体自噬过程予以清除。当此系统功能受阻时,神经元中出现显著的线粒体运输、动力学异常等功能障碍,导致AD病理改变加重。因此,线粒体自噬在AD中扮演着重要角色。越来越多的证据提示,对线粒体自噬的调控可能为AD的治疗提供一种新方法。  相似文献   

10.
自噬是细胞的一种正常的生理活动,参与细胞内损伤的蛋白质和亚细胞器经溶酶体途径降解的过程。自噬可以抵御外界的不良环境,在多种疾病中起着重要作用。近年来,大量研究表明自噬在细胞新陈代谢和生理功能上有双重作用,在疾病发生的不同时期,自噬起到不同的作用。通常情况自噬可以及时的清除细胞内损伤的蛋白质,作为一种细胞的保护机制,但是自噬的持续活化,导致细胞内大量蛋白质的降解,使细胞无法维持其基本结构,最终将导致细胞坏死或凋亡。自噬、凋亡和坏死的转化,很有可能受到p53、Bcl-2、Beclin-1、ATG5、TG2及p62等信号分子调控。肝脏和心脏是维持人体生命活动的重要器官,自噬在脂肪肝、肝硬化、心肌梗塞及心脏衰竭等疾病中扮演着重要的角色。本文总结了自噬、凋亡及坏死的相互关系,自噬在疾病中的双重作用,并重点介绍自噬在肝脏和心脏疾病中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号