首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Mg(2+)-dependent DNA endonucleases have been isolated from mammalian cells which have a strong preference to nick within long tracts of guanine residues in vitro. One endonuclease activity is mitochondrial (mt). The other endonuclease, called Endonuclease G, is associated with isolated nuclei, and is released when the nuclear chromatin is exposed to moderate ionic strength. Our laboratory has previously purified the mt endonuclease to near homogeneity from mitochondria of bovine heart and reported the enzyme to be a homodimer of a approximately 29 kDa polypeptide [Cummings, O. W. et al. (1987) J. Biol. Chem., 262, 2005-2015]. Although the purified mt endonuclease will extensively fragment M13 viral ssDNA and plasmid dsDNAs in vitro, the enzyme displays an unusually strong preference to nick within a (dG)12:(dC)12 sequence tract which resides just upstream from the origin of DNA replication in the mitochondrial genome. The nuclear Endonuclease G first identified from its selective targeting of several (dG)n:(dC)n tracts in vitro (where N = 3-29), was subsequently purified from calf thymus nuclei and shown to be a homodimer of a approximately 26-kDa polypeptide [Côté, J. et al. (1989) J. Biol. Chem., 264, 3301-3310]. In the present study, we find that Endonuclease G partially purified from calf thymus nuclei will extensively degrade both viral ss- and dsDNAs in vitro, and that the enzyme possesses biochemical properties and specificity for nucleotide sequences in DNA that are strongly related or identical to those of the mt endonuclease. These findings and the discovery of sequence identity between the proteins strengthen the conclusion that the nuclear Endonuclease G is the same enzyme as the mt endonuclease.  相似文献   

2.
The activity of purified bovine thymus terminal deoxynucleotidyl transferase was markedly inhibited when the enzyme was incubated in a poly(ADP-ribose)-synthesizing system containing purified bovine thymus poly(ADP-ribose) polymerase, NAD+, Mg2+ and DNA. All of these four components were indispensable for the inhibition. The inhibitors of poly(ADP-ribose) polymerase counteracted the observed inhibition of the transferase. Under a Mg2+-depleted and acceptor-dependent ADP-ribosylating reaction condition [Tanaka, Y., Hashida, T., Yoshihara, H. and Yoshihara, K. (1979) J. Biol. Chem. 254, 12433-12438], the addition of terminal transferase to the reaction mixture stimulated the enzyme reaction in a dose-dependent manner, suggesting that the transferase is functioning as an acceptor for ADP-ribose. Electrophoretic analyses of the reaction products clearly indicated that the transferase molecule itself was oligo (ADP-ribosyl)ated. When the product was further incubated in the Mg2+-fortified reaction mixture, the activity of terminal transferase markedly decreased with increase in the apparent molecular size of the enzyme, indicating that an extensive elongation of poly(ADP-ribose) bound to the transferase is essential for the observed inhibition. Free poly(ADP-ribose) and the polymer bound to poly(ADP-ribose) polymerase were ineffective on the activity of the transferase. All of these results indicate that the observed inhibition of terminal transferase is caused by the poly(ADP-ribosyl)ation of the transferase itself.  相似文献   

3.
E Wahle  G Martin  E Schiltz  W Keller 《The EMBO journal》1991,10(13):4251-4257
cDNA clones encoding mammalian poly(A) polymerase were isolated with probes generated by the polymerase chain reaction based on amino acid sequences derived from the purified enzyme. A bovine cDNA clone was obtained encoding a protein of 82 kDa. Expression in Escherichia coli resulted in the appearance of a poly(A) polymerase activity that was dependent on the addition of the purified specificity factor CPF and the presence of the polyadenylation signal AAUAAA in the RNA substrate. The activity copurified with a polypeptide of the expected size. A second class of cDNAs encoded a polypeptide of 43 kDa which was closely related to the N-terminal half of the 82 kDa protein. Northern blots showed two mRNAs of 4.2 and 2.4 kb that probably correspond to the two classes of cDNAs, as well as a third band of 1.3 kb. The sequence of the N-terminal half of bovine poly(A) polymerase is 47% identical with the amino acid sequence of the corresponding part of yeast poly(A) polymerase. Homologies to other proteins are of uncertain significance.  相似文献   

4.
A DNA-relaxing enzyme was purified 5 000-fold to homogeneity from isolated chloroplasts of Pisum sativum. The enzyme consists of a single polypeptide of 112 kDa. The enzyme was able to relax negatively supercoiled DNA in the absence of ATP. It is resistant to nalidixic acid and novobiocin, and causes a unit change in the linkage number of supercoiled DNA. The enzyme shows optimum activity at 37°C with 50 mM KCl and 10 mM MgCl2. From these properties, the enzyme can be classified as a prokaryotic type I topoisomerase.Using a partiall purified pea chloroplast DNA polymerase fraction devoid of topoisomerase I activity for in vitro replication on clones containing the pea chloroplast DNA origins of replication, a 2–6-fold stimulation of replication activity was obtained when the purified topoisomerase I was added to the reaction at 70–100 mM KCl. However, when the same reaction was carried out at 125 mM KCl, which does not affect DNA polymerase activity on calf thymus DNA but is completely inhibitory for topoisomerase I activity, a 4-fold drop in activity resulted. Novobiocin, an inhibitor of topoisomerase II, was not found to inhibit the in vitro replication of chloroplast DNA.  相似文献   

5.
DNA polymerase delta from calf thymus was purified under conditions that minimized proteolysis to a specific activity of 27,000 units/mg. The four step isolation procedure included phosphocellulose, hydroxyapatite, heparin-Sepharose and FPLC-MonoS. This enzyme consists of four polypeptides with Mr of 140, 125, 48 and 40 kilodaltons. Velocity gradient sedimentation in glycerol removed the 48 kDa polypeptide while the other three sedimented with the DNA polymerase activity. The biochemical properties of the three subunit enzyme and the copurification of 3'----5' exonuclease activity were typical for a bona fide DNA polymerase delta. Tryptic peptide analysis showed that the 140 kDa polypeptide was different from the catalytic 180 kDa polypeptide of calf thymus DNA polymerase alpha. Both high Mr polypeptides (140 and 125 kDa) were catalytically active as analysed in an activity gel. Four templates were used by DNA polymerase delta with different preferences, namely poly(dA)/oligo(dT)12-18 much much greater than activated DNA greater than poly(dA-dT) greater than primed single-stranded M13DNA. Calf thymus proliferating cell nuclear antigen (PCNA) could not stimulated this DNA polymerase delta in any step of the isolation procedure. If tested on poly(dA)/oligo(dT)12-18 (base ratio 10:1), PCNA had no stimulatory effect on DNA polymerase delta when tested with low enzyme DNA ratio nor did it change the kinetic behaviour of the enzyme. DNA polymerase delta itself did not contain PCNA. The enzyme had an intrinsic processivity of several thousand bases, when tested either on the homopolymer poly(dA)/oligo(dT)12-18 (base ratio 64:1) or on primed single-stranded M13DNA. Contrary to DNA polymerase alpha, no pausing sites were seen with DNA polymerase delta. Under optimal in vitro replication conditions the enzyme could convert primed single-stranded circular M13 DNA of 7,200 bases to its double-stranded form in less than 10 min. This supports that a PCNA independent DNA polymerase delta exists in calf thymus in addition to a PCNA dependent enzyme (Lee, M.Y.W.T. et al. (1984) Biochemistry 23, 1906-1913).  相似文献   

6.
We surveyed diacylglycerol kinase in different pig tissues by using rabbit antibody immunospecific to the brain 80 kDa enzyme [Kanoh, Iwata, Ono & Suzuki (1986) J. Biol. Chem. 261, 5597-5602]. Among the other tissues examined, the immunoreactive 80 kDa enzyme was found only in the thymus and, to a much lesser extent, in the spleen, although this enzyme species was widely distributed in a variety of brain regions. Other tissues such as platelets, kidney, heart and liver contained little, if any, immunoreactive enzymes. Gel filtration of cytosolic enzymes from several tissues revealed the presence of three major activity peaks, apparently corresponding to 280, 120 and 80 kDa. Thymus and spleen contained the immunoreactive 80 kDa species together with non-immunoreactive 280 kDa enzyme. In the case of platelets, the kinase consisted almost exclusively of non-immunoreactive 120 kDa species with some 280 kDa enzyme. In an attempt to characterize the different kinase forms, the thymus enzyme was chosen for further studies because of its high activity. No immunoreactive proteins were detected in Western-blot analysis when the 280 kDa enzyme was solvent-extracted, proteinase-treated or preincubated in the presence of Ca2+. In comparison with the 80 kDa species, the 280 kDa enzyme was much more heat-stable and less dependent on deoxycholate in the assay mixture. Although the purification of different forms of the kinase is required to confirm the presence of isoenzymes, the results show that there exist several immunologically distinct diacylglycerol kinase species.  相似文献   

7.
Summary Casein kinase II (CKII) has been purified from bovine heart tissue. Under conditions of low salt (0.05 M NaCl, 10 MM MgCl2), CKII forms structured aggregates that appear as filaments similar to results obtained withDrosophila CKII [C.V.C. Glover (1986) J. Biol. Chem. 261:14349]. The aggregates have been analyzed by sucrose density gradients and electron microscopy. Filament preparations of the enzyme have reduced but measurable kinase activity. The addition of salt restores activity. Various modulators of CKII activity have been examined with the enzyme in the low salt, polymerized form. The polyamines spermine or spermidine stimulated CKII activity as much as six fold; putrescine had no effect. Polylysine of varying lengths activated CKII 4–6 fold. Melittin, the basic polypeptide from bee venom, was also an effective activator. Activation of filament preparations was also observed if the CKII specific peptide (RRREEETEEE) was used as the substrate in place of casein. These results with filament preparations provide an alternative in vitro system for the study of possible regulatory aspects of CKII.  相似文献   

8.
9.
10.
Previous work has shown that the tryptic degradation pattern of the Neurospora plasma membrane H+-ATPase varies with the presence and absence of ligands, thus providing information about conformational states of the enzyme (Addison, R., and Scarborough, G. A. (1982) J. Biol. Chem. 257, 10421-10426; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 8827-8832). In the present study, sites of tryptic cleavage have been mapped by immunoblotting with N- and C-terminal specific antibodies and by direct sequencing of proteolytic products after electro-transfer to polyvinylidene difluoride filters. In the absence of ligands (likely to represent the E1 conformation), trypsin cleaved the 100-kDa ATPase polypeptide at three sites very near the N terminus: Lys-24, Lys-36, and Arg-73. Removal of the first 36 amino acid residues only slightly affected ATPase activity, but removal of the subsequent 37 residues inactivated the enzyme completely. In the presence of vanadate and Mg2+ (E2 conformation), the rate of trypsinolysis at Arg-73 was greatly reduced, and enzyme activity was protected. In addition, a new cleavage site near the C terminus (Arg-900) became accessible to trypsin. Both effects of vanadate occurred at micromolar concentrations, well within the range previously measured for vanadate inhibition of ATPase activity. Taken together, these results suggest that the Neurospora ATPase undergoes significant conformational changes at both termini of the polypeptide during its reaction cycle.  相似文献   

11.
12.
Antibodies against pig thymus poly(ADP-ribose) polymerase were obtained with enzyme-hemocyanin conjugates and used for immunoquantitation. The quick-blot procedure used allowed the determination of amounts as low as 1 ng of enzyme from whole cell trichloracetic acid precipitates. When applied to analysis of various human, rodent, and bovine cell types, surprisingly similar amounts of polymerase were found (1-5 ng of pig thymus polymerase equivalents/micrograms of DNA, 2 X 10(5) polymerase molecules/HeLa cell). Also, no significant difference was seen between normal and transformed cells. Polymerase tended to decline in several fibroblast cultures upon reaching confluency, which was not reflected by total polymerase activity. Divergence between total activity and immunogenic equivalents was also seen in alkylated cells and in rat liver treated with phenobarbital. Trichloroacetic acid-insoluble fractions dissolved in sodium dodecyl sulfate buffer could also be used to analyze, by Western blotting, the size distribution of poly(ADP-ribose) polymerase in vivo. Application to various cell types revealed that all mouse and rat cells tested had two immunogenic bands (116 and 98 kDa) of similar intensity. A highly conserved structure of poly(ADP-ribose) polymerase may be deduced from the existence of immunogenic and renaturable 116-kDa polypeptide bands even in the low eukaryotes Physarum polycephalum and Dictyostelium discoideum.  相似文献   

13.
Mammalian DNA ligase I is presumed to act in DNA replication. Rabbit antibodies against the homogeneous enzyme from calf thymus inhibited DNA ligase I activity and consistently recognized a single polypeptide of 125 kDa when cells from an established bovine kidney cell line (MDBK) were lysed rapidly by a variety of procedures and subjected to immunoblotting analysis. After biosynthetic labeling of MDBK cells with [35S]methionine, immunoprecipitation experiments revealed a polypeptide of 125 kDa that did not appear when purified calf thymus DNA ligase I was used in competition. A 125-kDa polypeptide was adenylated when immunoprecipitated protein from MDBK cells was incubated with [alpha-32P]ATP. Thus, the apparent molecular mass of the initial translation product is identical or nearly so to that of the purified enzyme. The half-life of the protein is 7 h as determined by pulse-chase experiments in asynchronous MDBK cells. Immunocytochemistry and indirect immunofluorescence experiments showed that DNA ligase I is localized to cell nuclei.  相似文献   

14.
Endoglycoceramidase (EGCase) cleaves the linkage between oligosaccharides and ceramides of various glycosphingolipids [Ito, M. & Yamagata, T. (1986) J. Biol. Chem. 261, 14278-14282]. A detergent was required for EGCase to express full activity, possibly due to its hydrophobic nature. Recently, activator proteins responsible for stimulating EGCase activity in the absence of detergents were isolated from the culture supernatant of Rhodococcus sp. [Ito, M., Ikegami, Y., & Yamagata, T. (1991) J. Biol. Chem. 266, 7919-7926]. The activity of activator II specific for EGCase II was heat-labile but insensitive to trypsin-treatment. This activator (69.2 kDa) was converted to the 27.9 kDa polypeptide via the 42 kDa intermediate by exhaustive trypsination, and the stimulatory activity of 27.9 kDa polypeptide on EGCase II was identical to that of the native form toward asialo GM1 and cell-surface GM3 of horse erythrocytes as substrates. This observation was successfully applied to obtain the purified activator without contamination with EGCase activity, which is abolished completely following treatment with trypsin.  相似文献   

15.
B I Kanner  S Keynan  R Radian 《Biochemistry》1989,28(9):3722-3728
The sodium- and chloride-coupled gamma-aminobutyric transporter, an 80-kDa glycoprotein, has been subjected to deglycosylation and limited proteolysis. The treatment of the 80-kDa band with endoglycosidase F results in its disappearance and reveals the presence of a polypeptide with an apparent molecular mass of about 60 kDa, which is devoid of 125I-labeled wheat germ agglutinin binding activity but is nevertheless recognized by the antibodies against the 80-kDa band. Upon limited proteolysis with papain or Pronase, the 80-kDa band was degraded to one with an apparent molecular mass of about 60 kDa. This polypeptide still contains the 125I-labeled wheat germ agglutinin binding activity but is not recognized by the antibody. The effect of proteolysis on function was examined. The transporter was purified by use of all steps except that for the lectin chromatography [Radian, R., Bendahan, A., & Kanner, B.I. (1986) J. Biol. Chem. 261, 15437-15441]. After papain treatment and lectin chromatography, gamma-aminobutyric transport activity was eluted with N-acetylglucosamine. The characteristics of transport were the same as those of the pure transporter, but the preparation contained instead of the 80-kDa polypeptide two fragments of about 66 and 60 kDa. The ability of the anti-80-kDa antibody to recognize these fragments was relatively low. The observations indicate that the transporter contains exposed domains which are not important for function.  相似文献   

16.
M H Sato  M Maeshima  Y Ohsumi  M Yoshida 《FEBS letters》1991,290(1-2):177-180
Vacuolar membrane H+-translocating pyrophosphatase (H+-PPase) was purified from pumpkin seedlings. Its enzymatic properties including molecular size of constituting polypeptide (75 kDa) were very similar to those of mung bean H+-PPase [(1989) J. Biol. Chem. 264, 20068–20073]. The native, functional molecular size of the pumpkin H+-PPase was estimated to be 135–139 kDa from gel permeation HPLC of the purified enzyme in the presence of detergent and from radiation inactivation of the enzyme in vacuolar membranes. It is concluded that native, functional pumpkin H+-PPase, and also probably H+-PPases from other plants, is a dimer of 75 kDa subunits.  相似文献   

17.
IRCM-Serine Protease 1 (IRCM-SP1) has recently been isolated and characterized from porcine pituitary anterior and neurointermediate lobes (Cromlishet al., 1986a,J. Biol. Chem. 261:10850–10858; Cromlishet al., 1986b,J. Biol. Chem. 261:10859–10870). This pituitary serine protease was shown to selectively cleave human proopiomelanocortin (POMC)-derived peptides at both pairs of basic residues and C-terminal to specific Arg residues, all known to be cleavedin vivo. Here, a similar enzyme was isolated from rat heart atria and ventricles. Rat IRCM-SP1 was shown to be highly specific for the same cleavage sites in POMC, as the porcine pituitary homologue. Furthermore, the rat and the porcine enzymes cleave rat pro-Atrial Natriuretic Factor (pro-ANF 1–126) to yield ANF 103–126, 102–126 and 99–126 in that order of preference. This suggests thatin vitro the cleavage sites preferred in pro-ANF resemble those found in brain and hypothalamus. The enzyme is nine times more abundant in atria versus ventricles/mg protein. It is concluded that IRCM-SP1, could well represent a common pro-hormone maturation enzyme for POMC and Pro-ANF and possibly many other pro-hormones.  相似文献   

18.
Lysyl hydroxylase (LH) catalyzes the formation of hydroxylysine in collagens; three human isoenzymes have been cloned so far. We report here on the purification of all three recombinant isoenzymes to homogeneity from the medium of cultured insect cells, and we demonstrate that they are all homodimers. Limited proteolysis experiments identified two main protease-sensitive regions in the monomers of about 80-85 kDa, corresponding to three fragments A-C (from the N to C terminus), with molecular masses of about 30, 37, and 16 kDa, respectively. Fragment A was found to play no role in LH activity as a recombinant B-C polypeptide constituted a fully active hydroxylase with K(m) values for cosubstrates and the peptide substrate that were identical to those of the full-length enzyme. LH3, but not LH1 and LH2, has also been reported recently (Heikkinen, J., Risteli, M., Wang, C., Latvala, J., Rossi, M., Valtavaara, M., and Myllyl?, R. (2000) J. Biol. Chem. 275, 36158-36163) to possess collagen glucosyltransferase activity. We confirm this highly surprising finding here and extend it by demonstrating that LH3 may also possess trace amounts of collagen galactosyltransferase activity. All the glucosyltransferase and galactosyltransferase activity of LH3 was found to reside in fragment A, which played no role in the hydroxylase activity of the polypeptide. This fragment is about 55% identical and 80% similar to the corresponding fragments of LH1 and LH2. However, the levels of the glycosyltransferase activities are so low that they may be of little biological significance. It is thus evident that human tissues must have additional glycosyltransferases that are responsible for most of the collagen glycosylation in vivo.  相似文献   

19.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The bacterial expression of human progastrin6–80 has been reported previously [Baldwin, G.S. et al. (2001) J. Biol. Chem. 276: 7791-7796]. The aims of the present study were to prepare full-length recombinant human progastrin1–80 and to compare its biological activity with that of progastrin6–80 in vitro, to determine whether or not the N-terminal five amino acids contributed to activity. A fusion protein of glutathione-S-transferase and human progastrin1–80 was expressed in Escherichia coli, collected on glutathione-agarose beads, and cleaved with enterokinase. Progastrin1–80 was purified by reversed-phase and anion exchange HPLC and characterized by radioimmunoassay, amino acid sequencing, and mass spectrometry. No differences were detected in the extent of stimulation by progastrin1–80 and progastrin6–80 in proliferation and migration assays with the mouse gastric cell line IMGE-5. We conclude that residues 1–5 of progastrin1–80 are not essential for biological activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号