首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three cDNAs, designated IIA3, IIA3v, and IIA4, coding for P450s in the CYP2A gene subfamily were isolated from a lambda gt11 library prepared from human hepatic mRNA. Only three nucleotide differences and a single amino acid difference, Leu160----His, were found between IIA3 and IIA3v, indicating that they are probably allelic variants. IIA4 displayed 94% amino acid similarity with IIA3 and IIA3v. The three cDNAs were inserted into vaccinia virus, and recombinant viruses were used to infect human hepatoma Hep G2 cells. Only IIA3 was able to produce an enzyme that had a reduced CO-bound spectrum with a lambda max at 450 nm. This expressed enzyme was able to carry out coumarin 7-hydroxylation (turnover number of 15 min-1) and ethoxycoumarin O-deethylation. cDNA-expressed IIA3v and IIA4 failed to incorporate heme and were enzymatically inactive. Analysis of IIA proteins in human liver microsomes, using antibody against rat IIA2, revealed two proteins of 49 and 50 kDa, the former of which appeared to correlate with human microsomal coumarin 7-hydroxylase activity. A more striking correlation was found between IIA mRNA and enzyme activity. The rat antibody was able to completely abolish coumarin 7-hydroxylase activity in 12 liver samples. In addition, kinetics of coumarin metabolism in two livers were monophasic over the substrate concentration tested. Km values obtained from human liver (2.3 microM) were similar to those obtained from lysates of hepatoma cells expressing IIA3 (3.6-7.1 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

4.
Comparing bufuralol 1'-hydroxylase activity among liver microsomes prepared from individuals whose CYP2D6 genotypes had been determined, we found that the activity tended to decrease depending on the number of the CYP2D6*10 allele. Pre-incubation of liver microsomes from individuals homozygous for the CYP2D6*10 allele resulted in a decrease in the enzyme activity more rapidly than those from individuals homozygous for the CYP2D6*1, suggesting that not only the catalytic activity but also the thermal stability of the enzyme appeared to be affected by the genetic polymorphism. To confirm this hypothesis, the kinetic parameters of CYP2D6.1 and CYP2D6.10 were compared for bufuralol 1'-hydroxylation and dextromethorphan O-demethylation using microsomes prepared from yeast transformed with plasmids carrying CYP2D6 cDNAs (*1A and *10B). Kinetic studies of these CYP2D6 forms indicated clear differences in the metabolic activities between the wild (CYP2D6.1) and the mutant enzymes (CYP2D6.10). Bufuralol 1(')-hydroxylase activity in microsomes of yeast expressing CYP2D6.10 was rapidly decreased by heat treatment, supporting the idea that the thermal stability of the enzyme was reduced by amino acid replacement from Pro (CYP2D6.1) to Ser (CYP2D6.10). These data strongly suggest that the thermal instability together with the reduced intrinsic clearance of CYP2D6.10 is one of the causes responsible for the known fact that Orientals show lower metabolic activities than Caucasians for drugs metabolized mainly by CYP2D6, because of a high frequency of CYP2D6*10 in Orientals.  相似文献   

5.
The ontogeny of vitamin D3 25-hydroxylase activity has been determined in liver microsomes of rat fetuses and neonates. Production of 25-hydroxyvitamin D3 was low (0.11 pmol/g liver/h) 3 days prior to birth. Production rates were 1.2, 2.2, 1.8, and 2.8 pmol/g liver/h on Day 0, Day 2, Day 7, and Day 15, respectively. 25-Hydroxyvitamin D3 production in neonates increased sixfold from Day 15 to Day 22 to a value twice that of the mothers (17.6 pmol/g liver/h compared with 7.3 pmol/g liver/h). Activity in the maternal microsomes was constant (0.22 to 0.30 pmol/mg protein/h) except for the day of parturition (0.54 pmol/mg protein/h) and Day 22 postpartum (0.44 pmol/mg protein/h). A cytosolic factor, present as early as 3 days prior to birth, was required for vitamin D3 25-hydroxylase activity in the fetuses and stimulated the 25-hydroxylase reaction (up to 2.5-fold) in neonates and mothers. The ability of cytosol to prevent degradation of vitamin D3 was also present in the fetal stage. These data suggest that microsomal vitamin D3 25-hydroxylase activity in rat liver microsomes develops slowly and reaches full activity near the weaning stage. Since the cytosolic factor(s) is/are present in the fetal stage, the limiting component in the maturation of vitamin D3 25-hydroxylase activity in liver microsomes is the development of the cytochrome P-450 vitamin D3 25-hydroxylase.  相似文献   

6.
The saturation of the fat contained in the diet has been observed to affect the acylcoenzyme A:cholesterol acyltransferase (ACAT) activity of rat liver microsomes. ACAT activity in microsomes (Mp) prepared from livers of rats fed a polyunsaturated fat-enriched diet containing 14% sunflower seed oil was 70-90% higher than in microsomes (Ms) prepared from livers of rats fed a saturated fat-enriched diet containing 14% coconut oil. This difference was observed within 20 days after the diets were begun, the earliest time tested, and persisted throughout the 70-day experimental period. The difference was noted at all [1-14C]palmitoyl CoA concentrations tested, 2.5-33 micronM, and at temperatures between 18 and 40 degrees C. Arrhenius plots revealed a single transition in enzyme activity, occurring at 29 degrees C in both microsomal preparations. Likewise, the activation energy above this transition was the same in Mp and Ms, 12.5 KCal/mol. Addition of albumin to the incubation medium increased the ACAT activity of both microsome preparations, but the difference between Mp and Ms persisted. Mp was enriched in polyenoic fatty acids, primarily 18:2 and 20:4, while Ms was enriched in monoenoic acids. Although the 20:4 increase in Mp occurred in all phosphoglycerides, it was especially pronounced in the serine and inositol phosphoglyceride fraction. There were no differences in the phospholipid or cholesterol content, phospholipid head group composition, or protein composition of the two microsomal preparations. The possibility is discussed that the changes in ACAT activity result from the differences in fatty acid composition of the microsomes. Other microsomal enzymes exhibited varying responses to these dietary fatty acid modifications. Palmitoyl CoA hydrolase and NADPH cytochrome c reductase activities were unchanged. UDP glucuronyl transferase activity was 50% higher in Mp, but glucose-6-phosphatase and NADH cytochrome b5 reductase activities were 25% higher in Ms. Therefore, dietary fat modifications do not produce a uniform effect on the activity of microsomal enzymes.  相似文献   

7.
The aim of the present study was to characterize the acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity in human liver microsomes. Liver biopsies were obtained from patients undergoing elective cholecystectomy under highly standardized conditions. In 34 patients the enzyme activity of the microsomal fraction averaged 6.6 +/- 0.7 (mean +/- SEM) pmol.min-1.mg protein-1 in the absence of exogenous cholesterol. Freezing of the liver biopsy in liquid nitrogen increased the enzyme activity five- to sixfold. Similarly, freezing of the microsomal fraction prepared from unfrozen liver tissue increased the enzyme activity about twofold. These results may help to explain previous disparate results reported in the literature. The enhanced ACAT activity obtained by freezing was at least partly explained by a transfer of unesterified cholesterol to the microsomal fraction and possibly also by making the substrate(s) more available to the enzyme. Preincubation of the microsomal fraction, prepared from unfrozen liver tissue, with unlabeled cholesterol increased the enzyme activity about fivefold. This finding indicates that hepatic ACAT in humans can also utilize exogenous cholesterol as substrate. Addition of cholesterol to frozen microsomes prepared from unfrozen liver tissue increased the ACAT activity two- to threefold, whereas addition of cholesterol to microsomes prepared from frozen liver tissue did not further increase the enzyme activity. No evidence supporting the concept that ACAT is activated-inactivated by phosphorylation-dephosphorylation could be obtained by assaying the enzyme under conditions similar to those during which the human HMG-CoA reductase is inactivated-activated.  相似文献   

8.
Effect of thiols on lipid peroxidation in rat liver microsomes   总被引:1,自引:0,他引:1  
The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and S-methyl-glutathione had no effect on in vitro lipid peroxidation. l-Cysteine stimulated lipid peroxidation and also of d-penicillamine and dl-dithiothreitol the pre-oxidant capacity predominated the anti-oxidant capacity. Cysteamine afforded a pronounced protection against in vitro lipid peroxidation. In contrast to the labile character of the glutathione dependent protection, the protection by cysteamine was not affected by heat-pretreatment of the liver microsomes or alkylating protein sulfhydryl groups by N-ethyl maleimide. Again in contrast to glutathione, the protection against in vitro microsomal lipid peroxidation by cysteamine was not reduced after in vivo lipid peroxidation induced by CC14. This suggests that even after the process of lipid peroxidation has been started, administration of cysteamine might still be beneficial.  相似文献   

9.
10.
We studied the biotransformation of haloperidol, bromperidol and their reduced forms by human liver microsomes. Nifedipine oxidation (CYP3A) activity correlated significantly with N-dealkylation rates of haloperidol and bromperidol and oxidation rates of their reduced forms, while neither ethoxyresorufin O-deethylation (CYP1A2) activity nor dextromethorphan O-deethylation (CYP2D6) activity did. In chemical and immunoinhibition studies, only troleandomycin and anti-CYP3A4 serum inhibited both formation rates of 4-fluorobenzoylpropionic acid, a metabolite of haloperidol and bromperidol, and back oxidation rates. Among 10 recombinant isoforms examined, only CYP3A4 showed catalytic activity. The Vmax and Km values of N-dealkylation of bromperidol and reoxidation of reduced bromperidol were similar to those of haloperidol and reduced haloperidol, respectively. The present study indicates that CYP3A plays a major role in N-dealkylation of and oxidation back to bromperidol as well as haloperidol and suggests that modification of in vivo CYP3A activity by inhibition or induction may affect the pharmacokinetics and therapeutic effects of haloperidol and bromperidol.  相似文献   

11.
Increased catalase activity was observed in the liver microsomal fraction of ethanol-treated rats (10% v/v aqueous ethanol solution per os for 5 weeks). In contrast, cytochrome P-450 concentration and specific activity of NADPH-cytochrome c reductase remained at the same level as in the liver of control rats (drinking water). The ratio of microsomal H2O2-generation to catalase activity was lower in the "ethanol" group than in the control one. This phenomenon seems to be related to the increased contribution of the "peroxidatic" reaction (increased rate of ethanol oxidation). Administration of mesitylene (1,3,5-trimethylbenzene) by gastric tube for 3 days (5 mmoles per kg daily) increased cytochrome P-450 concentration, specific activity of NADPH-cytochrome c reductase and ethanol metabolism.  相似文献   

12.
13.
Rats were treated with doxorubicin (2.5 mg/kg body wt, iv) once a week for 8 weeks. Alpha-Tocopherol (400 mg/kg body wt/day) was co-administered orally for 2 months. Cytochrome-P450 (Cyt-P450) and Cytochrome-b5 (Cyt-b5) levels decreased significantly in doxorubicin treated rats. Significant decreases were observed in glucose-6-phosphatase, Cyt-P450 and Cyt-b5 reductase activities. In vitro lipid peroxidation study showed that alpha-tocopherol significantly minimises the lipid peroxide formation by doxorubicin. There was a significant change in microsomal cholesterol and phospholipid levels. Alpha-Tocopherol co-administration reduced the alterations in xenobiotic metabolising system and microsomal lipid levels. The results were discussed with reference to drug metabolising enzymes, lipid peroxidation and antioxidant nature of alpha-tocopherol.  相似文献   

14.
15.
Zhou Q  Matsumoto S  Ding LR  Fischer NE  Inaba T 《Life sciences》2004,75(18):2145-2155
The effect of human serum albumin (HSA), in its endogenous, free fatty acid free (FAF) and globulin free (GF) form, on the activity of CYP2C9 was studied in human liver microsomes using tolbutamide as the substrate. The widely used BSA was included to assess the differential effect of BSA and HSA. CYP2C9 activity was expressed as CLint (Vmax/Km). HSA(FAF) and BSA showed a concentration-dependent and biphasic (activation and inhibition) interaction with CYP2C9 activity. HSA(GF) and HSA exhibited an inhibitory effect, with an inhibition constant, Ki, of 19.9 microM (0.13% albumin) and 42.2 microM (0.35% albumin), respectively. Enzyme-kinetics revealed that the activation is accompanied by a decrease in Km values, while with inhibition Km values increased. A simplified method to calculate clearance, utilizing a single slope (V/S) determination based on V over the lowest linear range of [S] (designated as CLone) was assessed. Virtually identical values were obtained for CLint and CLone. The free-drug hypothesis was tested by comparing ratios of relative CLint/unbound fraction (FDH Test ratio). The FDH Test ratio for HSA was about 1, indicating that HSA binding of tolbutamide reduced the CYP2C9 activity in accord with the free-drug hypothesis. The FDH Test ratios for BSA and HSA(FAF) were 3.7 and 3.0, revealing a monophasic activation of CYP2C9. For 2%HSA(GF) the ratio of 0.3 confirmed inhibition. As revealed by their removal, free fatty acids and globulins, significantly alter the interaction of HSA with CYP2C9. In addition, HSA and BSA showed different effects on the oxidation of tolbutamide by CYP2C9.  相似文献   

16.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   

17.
1. The structural-protein component of microsomal membranes was isolated by three separate methods. Analysis by polyacrylamide-gel electrophoresis indicated that the microsomal structural component is made up of a heterogeneous group of proteins. These proteins were further characterized by their phospholipid-binding capacity. The electrophoretic patterns of microsomal structural proteins were found to differ significantly from those of mitochondrial structural proteins. 2. The reticulosomal fraction was also characterized by electrophoresis with reference to total microsomal proteins, microsomal structural proteins and ribosomal proteins. The reticulosomes gave an electrophoretic pattern significantly different from those of the other three preparations examined. It is suggested that reticulosomes consist largely of enzymic proteins of the endoplasmic reticulum.  相似文献   

18.
A radio-enzymatic method was used to measure the activity of estradiol-2-hydroxylase in liver microsomes of male and female Wistar rats, ranging in age from 10 to 63 days. In pre-pubertal rats (10-30 days) the Vmax increased, but revealed no sex differences. After 30 days of age, however, it decreased in females. In males, on the other hand, it increased still further, reaching a maximum in adulthood. The apparent Km showed no significant sex differences in pre-pubertal rats, but appeared to decline after puberty in females. In females puberty was also associated with the appearance of important changes in the kinetic properties of estradiol-2-hydroxylase. These changes were reflected in hyperbolic Lineweaver-Burk plots. Hill plots of this data gave straight lines with slopes significantly less than one--indicating negative cooperativity. Alternatively the hyperbolic Lineweaver-Burk plots could mean that the enzyme consists of more than one form, which act on the same substrate, but with different affinities. It is concluded that development in female Wistar rats is associated with important qualitative changes in the kinetic properties of estradiol-2-hydroxylase and that factors which become operative during puberty play a key role in initiating these changes.  相似文献   

19.
Pigments of rat liver microsomes   总被引:1,自引:0,他引:1  
  相似文献   

20.
The distribution of vitamin K epoxidase activity in rough and smooth microsomes has been studied and compared to the prothrombin precursor and vitamin K-dependent carboxylase activity. All three activities were high in rough microsomes as compared to the low levels found in smooth microsomes. The results are in agreement with the suggestion that there might be a linkage between the vitamin K-dependent carboxylation and epoxidation reaction in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号