首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beauvericin is a secondary metabolite natural product from microorganisms and has been shown to have a new potential antifungal activity. In this study, the metabolism and inhibition of beauvericin in human liver microsomes (HLM) and rat liver microsomes (RLM) were investigated. The apparent K(m) and V(max) of beauvericin in HLM were determined by substrate depletion approach and its inhibitory effects on cytochromes P450 (CYP) activities were evaluated using probe substrates, with IC(50) and the (K(i)) values were 1.2 microM (0.5 microM) and 1.3 microM (1.9 microM), respectively for CYP3A4/5 (midazolam) and CYP2C19 (mephenytoin). Similarly, beauvericin was also a potent inhibitor for CYP3A1/2 (IC(50): 1.3 microM) in RLM. Furthermore, the pharmacokinetics of beauvericin in the rat were studied after p.o administration alone and co-administration with ketoconazole, which indicated a pharmacodynamic function may play a role in the synergistic effect on antifungal activity.  相似文献   

2.
目的探讨紫杉醇对食蟹猴和人肝微粒体CYP1A2、CYP2A6和CYP3A4酶活性的影响。方法采用食蟹猴和人肝脏微粒体,分别以非那西汀、睾丸酮和香豆素分别作为CYP1A2、CYP2A6、CYP3A4的底物,建立CYP1A2、CYP2A6和CYP3A4体外代谢体系。采用不同浓度的紫杉醇分别与上述3种底物共同孵育于肝微粒体代谢体系中。用HPLC法分别测定各底物的代谢产物扑热息痛、6β-羟基睾丸酮、7-羟基香豆素的产生量,计算IC50值,以评估紫杉醇对CYP1A2、CYP2A6和CYP3A4代谢的影响。结果紫杉醇对食蟹猴肝微粒体3种酶的IC50值分别为570±5.9μmol/L、140±2.9μmol/L和无影响;紫杉醇对人肝微粒体3种酶的IC50值分别为193±6.6μmol/L、253±3.6μmol/L和24±1.6μmol/L。结论紫杉醇对食蟹猴肝微粒体CYP1A2和CYP3A4活性具有一定的抑制作用,但对CYP2A6酶的活性几乎没有影响。紫杉醇对人肝微粒体CYP1A2和CYP3A4活性的抑制作用较弱,但对CYP2A6酶的活性抑制作用较强,提示临床上紫杉醇与作为上述酶底物的药物联合用药时应慎重,以避免因中西药物相互作用所导致的不良反应发生。  相似文献   

3.
Kim KA  Lee JS  Park HJ  Kim JW  Kim CJ  Shim IS  Kim NJ  Han SM  Lim S 《Life sciences》2004,74(22):2769-2779
Oleanolic acid (OA) and ursolic acid (UA), triterpene acids having numerous pharmacological activities including anti-inflammatory, anti-cancer, and hepato-protective effects, were tested for their ability to modulate the activities of several cytochrome P450 (CYP) enzymes using human liver microsomes. OA competitively inhibited CYP1A2-catalyzed phenacetin O-deethylation and CYP3A4-catalyzed midazolam 1-hydroxylation, the major human drug metabolizing CYPs, with IC50 (Ki) values of 143.5 (74.2) microM and 78.9 (41.0) microM, respectively. UA competitively inhibited CYP2C19-catalyzed S-mephenytoin 4'-hydroxylation with an IC50 (Ki) value of 119.7 (80.3) microM. However, other CYPs tested showed no or weak inhibition by both OA and UA. The present study demonstrates that OA and UA have inhibitory effects on CYP isoforms using human liver microsomes. It is thus likely that consumption of herbal medicines containing OA or UA, or administration of OA or UA, can cause drug interactions in humans when used concomitantly with drugs that are metabolized primarily by CYP isoforms. In addition, it appears that the inhibitory effect of OA on CYP1A2 is, in part, related to its anti-inflammatory and anticancer activities.  相似文献   

4.
CI-1034, an endothelin-A receptor antagonist was being developed for pulmonary hypertension. Drug-drug interaction studies using human hepatic microsomes were conducted to assess CYP1A2, CYP2C9, CYP2C19, CYP3A4 and CYP2D6 inhibition potential; CYP3A4 induction potential was evaluated using primary human hepatocytes. CI-1034 moderately inhibited CYP2C9 (IC(50) 39.6 microM) and CYP3A4 activity (IC(50) 21.6 microM); CYP3A4 inhibition was metabolism-dependent. In human hepatocytes, no increase in CYP3A4 activity was observed in vitro, while mRNA was induced 15-fold, similar to rifampin, indicating that CI-1034 is both an inhibitor and inducer of CYP3A4. A 2-week clinical study was conducted to assess pharmacokinetics, pharmacodynamics and safety. No significant changes were observed in [formula: see text] between days 1 and 14. However, reversible elevations of serum liver enzymes were observed with a 50mg BID dose and the program was terminated. To further understand the interactions of CI-1034 in the liver and possible mechanisms of the observed hepatotoxicity, we evaluated the effect of CI-1034 on bile acid transport and previously reported that CI-1034 inhibited biliary efflux of taurocholate by 60%, in vitro. This indicated that inhibition of major hepatic transporters could be involved in the observed hepatotoxicity. We next evaluated the in vitro inhibition potential of CI-1034 with the major hepatic transporters OATP1B1, OATP1B3, OATP2B1, MDR1, MRP2 and OCT. CI-1034 inhibited OATP1B1 (K(i) 2 microM), OATP1B3 (K(i) 1.8 microM) and OATP2B1 activity (K(i) 3.3 microM) but not OCT, MDR1 or MRP2 mediated transport. Our data indicates that CI-1034 is an inhibitor of major hepatic transporters and inhibition of bile efflux may have contributed to the observed clinical hepatotoxicity. We recommend that in vitro drug-drug interaction panels include inhibition and induction studies with transporters and drug metabolizing enzymes, to more completely assess potential in vivo interactions or toxicity.  相似文献   

5.
Furanocoumarins have been shown to inhibit CYP3A4 in vitro with varying degrees of potency. In this study, we report the effects of a series of novel furanocoumarins based on the naturally occurring derivative 8-geranylepoxypsoralen which has been shown to be a more potent inhibitor of CYP3A4 than its 5-position-substituted counterpart bergamottin. Compounds were designed, synthesised and tested for their ability to inhibit CYP3A4 activity in human liver microsomes using testosterone as the marker substrate. Both the saturated and unsaturated phenolic furanocoumarin derivatives were found to be inactive. However, the 8-alkyloxy-furanocoumarin analogues were shown to inhibit CYP3A4 activity in a dose dependent manner, with IC(50) values ranging from 0.78+/-0.11 to 3.93+/-0.53 microM. The reduced furan derivative dihydro-8-geranyloxypsoralen showed a 4-fold decrease in inhibitory potency, suggesting that the furan moiety plays a role in the interaction between these compounds and CYP3A4.  相似文献   

6.
Drug-drug interactions involving cytochrome P(450) (CYP) are an important factor in whether a new chemical entity will survive through to the development stage. Therefore, the identification of this potential as early as possible in vitro could save considerable future unnecessary investment. In vitro CYP interaction screening data generated for CYP2C9, CYP2D6, and CYP3A4 were initially analyzed to determine the correlation of IC(50) from 10- and 3-point determinations. A high correlation (r = 0.99) prompted the further assessment of predicting the IC(50) by a single value of percent inhibition at either 10, 3, or 1 microM. Statistical analysis of the initial proprietary compounds showed that there was a strong linear relationship between log IC(50) and percent inhibition at 3 microM, and that it was possible to predict a compound's IC(50) by the percent inhibition value obtained at 3 microM. Additional data for CYP1A2, CYP2C19, and the recombinant CYP2D6 were later obtained and used together with the initial data to demonstrate that a single statistical model could be applicable across different CYPs and different in vitro microsomal systems. Ultimately, the data for all five CYPs and the recombinant CYP2D6 were used to build a statistical model for predicting the IC(50) with a single point. The 95% prediction boundary for the region of interest was about +/- 0.37 on log(10) scale, comparable to the variability of in vitro determinations for positive control IC(50) data. The use of a single inhibitor concentration would enable determination of more IC(50) values on a 96-well plate and result in more economical use of compounds, human liver or expressed enzyme microsomes, substrates, and reagents. This approach would offer the opportunity to increase screening for CYP-mediated drug-drug interactions, which may be important given the challenges provided by the generation of orders of magnitude more new chemical entities in the field of combinatorial chemistry. In addition, the algorithmic approach we propose would obviously be applicable for other in vitro bioactivity and therapeutic target enzyme and receptor screens.  相似文献   

7.
Cetirizine, terfenadine, loratadine, astemizole and mizolastine were compared for their ability to inhibit marker activities for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and for some glucuronidation isoenzymes in human liver microsomes. The most pronounced effects were observed with terfenadine, astemizole and loratadine which inhibited CYP3A4-mediated testosterone 6beta-hydroxylation (IC50 of 23, 21 and 32 microM, respectively) and CYP2D6-mediated dextromethorphan O-demethylation (IC50 of 18, 36 and 15 microM, respectively). In addition, loratadine markedly inhibited the CYP2C19 marker activity, (S)-mephenytoin 4-hydroxylation (Ki of 0.17 microM). Furthermore, loratadine activated the CYP2C9-catalyzed tolbutamide hydroxylation (ca. 3-fold increase at 30 microM) and inhibited some glucuronidation enzymes. Mizolastine appeared to be a relatively weak and unspecific inhibitor of CYP2E1, CYP2C9, CYP2D6 and CYP3A4 (IC50Ss in the 100 micromolar range). Cetirizine demonstrated no effect on the investigated activities. A comparison of the inhibitory potencies of cetirizine, terfenadine, loratidine, astemizole and mizolastine with their corresponding plasma concentrations in humans suggests that these antihistamines are not likely to interfere with the metabolic clearance of coadministered drugs, with the exception of loratidine, which appears to inhibit CYP2C19 with sufficient potency to warrant additional investigation.  相似文献   

8.
Reduction of toxic metabolite formation of acetaminophen   总被引:5,自引:0,他引:5  
Acetaminophen is a widely used over-the-counter drug that causes severe hepatic damage upon overdose. Cytochrome P450-dependent oxidation of acetaminophen results in the formation of the toxic N-acetyl-p-benzoquinone-imine (NAPQI). Inhibition of cytochrome P450 enzymes responsible for NAPQI formation might be useful--besides N-acetylcysteine treatment--in managing acetaminophen overdose. Investigations were carried out using human liver microsomes to test whether selective inhibition of cytochrome P450s reduces NAPQI formation. Selective inhibition of CYP3A4 and CYP1A2 did not reduce, whereas the inhibition of CYP2A6 and CYP2E1 significantly decreased NAPQI formation. Furthermore, selective CYP2E1 inhibitors that are used in human therapy were tested for their inhibitory effect on NAPQI formation. 4-Methylpyrazole, disulfiram, and diethyl-dithiocarbamate were the most potent inhibitors with IC(50) values of 50 microM, 8 microM, and 33 microM, respectively. Although cimetidin is used in the therapy of acetaminophen overdose as an inhibitor of cytochrome P450, it is not able to reduce NAPQI formation.  相似文献   

9.
Lee JY  Duke RK  Tran VH  Hook JM  Duke CC 《Phytochemistry》2006,67(23):2550-2560
Literature indicates that herb-drug interaction of St. John's wort is largely due to increased metabolism of the co-administered drugs that are the substrates of cytochrome P450 (CYP) 3A4 enzyme, alteration of the activity and/or expression of the enzyme. The major St. John's wort constituents, acylphloroglucinols, were evaluated for their effects on CYP3A4 enzyme activity to investigate their roles in herb-drug interaction. Hyperforin and four oxidized analogues were isolated from the plant and fully characterized by mass spectral and NMR analysis. These acylphloroglucinols inhibited activity of CYP3A4 enzyme potently in the fluorometric assay using the recombinant enzyme. Furoadhyperforin (IC(50) 0.072 microM) was found to be the most potent inhibitor of CYP3A4 enzyme activity, followed by furohyperforin isomer 1 (IC(50) 0.079 microM), furohyperforin isomer 2 (IC(50) 0.23 microM), hyperforin (IC(50) 0.63 microM) and furohyperforin (IC(50) 1.3 microM). As the acylphloroglucinols are potent inhibitors of the CYP3A4 enzyme, their modulation of the enzyme activity is unlikely to be involved in increased drug metabolism by St. John's wort.  相似文献   

10.
The design synthesis and SAR of a series of chiral ring-constrained norepinephrine reuptake inhibitors with improved physicochemical properties is described. Typical compounds are potent (IC(50)s<10 nM), selective against the other monoamine transporters, weak CYP2D6 inhibitors (IC(50)s>1 microM) and stable to oxidation by human liver microsomes. In addition, the compounds exhibit a favorable polarity profile.  相似文献   

11.
By screening potential inhibitors of drug metabolism using the in vitro models, potential drug-drug interactions in vivo may be predicted with the use of appropriate pharmacokinetic principles. This study aimed to develop a rapid screening system using human liver microsomes to efficiently identify the potential inhibitors of DMXAA metabolism. Initial IC50 was estimated by using a two-point method, and then Ki values were determined if required and compared with those initial IC50 values. More than 100 compounds including known substrates and inhibitors of human uridine diphosphate glucuronosyltransferases (UGTs) and cytochrome P450 (CYP), anti-cancer drugs and xanthenone analogues were screened for their inhibitory effect on DMXAA glucuronidation and 6-methylhydroxylation in human liver microsomes. Both metabolites of DMXAA, DMXAA acyl glucuronide (DMXAA-G) and 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA), formed in human liver microsomes were quantitated by validated HPLC methods. The results indicated that there was a significant relationship (r2 = 0.966, P < 0.001) between the two-point IC50 values and the apparent Ki values for 20 compounds showing significant inhibitory effects on DMXAA metabolism, suggesting the usefulness of the two-point determination for the initial screening of compounds. This study has been completed using a strategy for rapid HPLC analysis and thus provided early access to detailed information for potential inhibitors of DMXAA metabolism and allows for further DMXAA-drug interaction studies.  相似文献   

12.
Or PM  Lam FF  Kwan YW  Cho CH  Lau CP  Yu H  Lin G  Lau CB  Fung KP  Leung PC  Yeung JH 《Phytomedicine》2012,19(6):535-544
The present study investigated the effects of Radix Astragali (RA) and Radix Rehmanniae (RR), the major components of an anti-diabetic foot ulcer herbal formula (NF3), on the metabolism of model probe substrates of human CYP isoforms, CYP1A2, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, which are important in the metabolism of a variety of xenobiotics. The effects of RA or RR on human CYP1A2 (phenacetin O-deethylase), CYP2C9 (tolbutamide 4-hydroxylase), CYP2D6 (dextromethorphan O-demethylase), CYP2E1 (chlorzoxazone 6-hydroxylase) and CYP3A4 (testosterone 6β-hydroxylase) activities were investigated using pooled human liver microsomes. NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.98mg/ml) and CYP3A4 (IC(50)=0.76mg/ml), with K(i) of 0.67 and 1.0mg/ml, respectively. With specific human CYP2C9 and CYP3A4 isoforms, NF3 competitively inhibited activities of CYP2C9 (IC(50)=0.86mg/ml) and CYP3A4 (IC(50)=0.88mg/ml), with K(i) of 0.57 and 1.6mg/ml, respectively. Studies on RA or RR individually showed that RR was more important in the metabolic interaction with the model CYP probe substrates. RR dose-dependently inhibited the testosterone 6β-hydroxylation (K(i)=0.33mg/ml) while RA showed only minimal metabolic interaction potential with the model CYP probe substrates studied. This study showed that RR and the NF3 formula are metabolized mainly by CYP2C9 and/or CYP3A4, but weakly by CYP1A2, CYP2D6 and CYP2E1. The relatively high K(i) values of NF3 (for CYP2C9 and CYP3A4 metabolism) and RR (for CYP3A4 metabolism) would suggest a low potential for NF3 to cause herb-drug interaction involving these CYP isoforms.  相似文献   

13.
R Feng  X Zhou  PM Or  JY Ma  XS Tan  J Fu  C Ma  JG Shi  CT Che  Y Wang  JH Yeung 《Phytomedicine》2012,19(12):1125-1133
Halenia elliptica D. Don is a Tibetan herb and medicinal preparations containing Halenia elliptica have been commonly used for the treatment of hepatitis B virus infection in China. The metabolism of 1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1) to its metabolites is mediated through cytochrome P450 enzymes. This study aimed to investigate the herb-drug interaction potential of HM-1 by studying its effects on the metabolism of model probe substrates of five major CYP450 isoforms in human liver microsomes. HM-1 showed moderate inhibitory effects on CYP1A2 (IC(50)=1.06μM) and CYP2C9 (IC(50)=3.89μM), minimal inhibition on CYP3A4 (IC(20)=11.94μM), but no inhibition on model CYP2D6 (dextromethorphan) and CYP2E1 (chlorzoxazone) probe substrates. Inhibition kinetic studies showed that the K(i) values of HM-1 on CYP1A2, CYP2C9 and CYP3A4 were 5.12μM, 2.00μM and 95.03μM, respectively. HM-1 competitively inhibited testosterone 6β-hydroxylation (CYP3A4) but displayed mixed type inhibitions for phenacetin O-deethylation (CYP1A2) and tolbutamide 4-hydroxylation (CYP2C9). Molecular docking study confirmed the inhibition modes of HM-1 on these human CYP isoforms.  相似文献   

14.
Yeung JH  Or PM 《Phytomedicine》2012,19(5):457-463
Polysaccharide peptide (PSP), isolated from COV-1 strain of Coriolus versicolor, is commonly used as an adjunct in cancer chemotherapy or health supplement in China. Previous studies have shown that PSP decreased antipyrine clearance and inhibited rat CYP2C11-mediated tolbutamide 4-hydroxylation and in human CYP2C9. In this study, the effects of the water extractable fraction of PSP on the metabolism of model CYP1A2, CYP2D6, CYP2E1 and CYP3A4 probe substrates were investigated in pooled human liver microsomes. PSP (1.25-20μM) dose-dependently decreased CYP1A2-mediated metabolism of phenacetin to paracetamol (IC(50) 19.7μM) and CYP3A4-mediated metabolism of testosterone to 6β-hydroxytestosterone (IC(20) 7.06μM). Enzyme kinetics studies showed the inhibition of CYP1A2 activity was competitive and concentration-dependent (K(i)=18.4μM). Inhibition of testosterone to 6β-hydroxytestosterone was also competitive and concentration-dependent (K(i)=31.8μM). Metabolism of dextromethorphan to dextrorphan (CYP2D6-mediated) and chlorzoxazone to 6-hydroxychlorzoxazone (CYP2E1-mediated) was only minimally inhibited by PSP, with IC(20) values at 15.6μM and 11.9μM, respectively. This study demonstrated that PSP competitively inhibited the CYP1A2- and CYP3A4-mediated metabolism of model probe substrates in human liver microsomes in vitro. The relatively high K(i) values for CYP1A2 and CYP3A4 would suggest a low potential for PSP to cause herb-drug interaction related to these CYP isoforms.  相似文献   

15.
应用体外肝微粒体孵育体系,考察胡椒碱在人、SD大鼠、小鼠、恒河猴和比格犬5个种属肝微粒体中的代谢稳定性,比较代谢的种属差异,确定其在人肝微粒体中的代谢表型。通过UFLC-MS/MS检测方法,测定胡椒碱在各个种属肝微粒体中孵育后的剩余浓度,考察他们的代谢稳定性及体外代谢动力学参数。采用化学抑制法考察胡椒碱在人肝微粒体中的代谢表型。结果表明胡椒碱在人、SD大鼠、小鼠、恒河猴和比格犬的肝微粒体中,半衰期T1/2分别为31. 36、48. 46、138. 60、147. 45、165. 00 min;体外固有清除率CLint分别为0. 0442、0. 0286、0. 0100、0. 0094、0. 0084m L/(m L·mg);在人肝微粒体中,胡椒碱主要被CYP3A4和CYP2C9酶代谢。推测胡椒碱在各种肝微粒体中的代谢均相对较稳定,其中大鼠和人的肝微粒体代谢性质最相近,在后续的实验中可以考虑用大鼠的代谢结果预测人的代谢结果;人肝微粒体中参与胡椒碱代谢的酶主要有CYP3A4和CYP2C9。  相似文献   

16.
Bioactive compounds present in grapefruit juice are known to increase the bioavailability of certain medications by acting as potent CYP 3A4 inhibitors. An efficient technique has been developed for isolation and purification of three furocoumarins. The isolated compounds have been tested for the inhibition of human CYP 1B1 isoform using specific substrates. Grapefruit juice was extracted with ethyl acetate (EtOAc) and the dried extract was loaded onto silica gel column chromatography. Further, column fractions were subjected to preparative HPLC to obtain three compounds. The purity of these compounds was analyzed by HPLC and structures were determined by NMR studies. The identified compounds, bergamottin, 6',7'-dihydroxybergamottin (DHB), and paradisin-A, were tested for their inhibitory effects on hydroxylase and O-dealkylase activities of human cytochrome P450 isoenzymes CYP 3A4 and CYP 1B1. Paradisin-A was found to be a potent CYP 3A4 inhibitor with an IC50 of 1.2 microM followed by DHB and bergamottin. All three compounds showed a substantial inhibitory effect on CYP 3A4 below 10 microM. Inhibitory effects on CYP 1B1 exhibited a greater variation due to the specificity of substrates. Paradisin A showed an IC50 of 3.56+/-0.12 microM for the ethoxy resorufin O-dealkylase (EROD) activity and 33.56+/-0.72 microM for the benzyloxy resorufin (BROD). DHB and bergamottin showed considerable variations for EROD and BROD activities with an IC50 of 7.17 microM and 13.86 microM, respectively.  相似文献   

17.
The aim of the present study was to identify the enzymes in human liver catalyzing hydroxylations of bile acids. Fourteen recombinant expressed cytochrome P450 (CYP) enzymes, human liver microsomes from different donors, and selective cytochrome P450 inhibitors were used to study the hydroxylation of taurochenodeoxycholic acid and lithocholic acid. Recombinant expressed CYP3A4 was the only enzyme that was active towards these bile acids and the enzyme catalyzed an efficient 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid. The Vmax for 6alpha-hydroxylation of taurochenodeoxycholic acid by CYP3A4 was 18.2 nmol/nmol P450/min and the apparent Km was 90 microM. Cytochrome b5 was required for maximal activity. Human liver microsomes from 10 different donors, in which different P450 marker activities had been determined, were separately incubated with taurochenodeoxycholic acid and lithocholic acid. A strong correlation was found between 6alpha-hydroxylation of taurochenodeoxycholic acid, CYP3A levels (r2=0.97) and testosterone 6beta-hydroxylation (r2=0.9). There was also a strong correlation between 6alpha-hydroxylation of lithocholic acid, CYP3A levels and testosterone 6beta-hydroxylation (r2=0.7). Troleandomycin, a selective inhibitor of CYP3A enzymes, inhibited 6alpha-hydroxylation of taurochenodeoxycholic acid almost completely at a 10 microM concentration. Other inhibitors, such as alpha-naphthoflavone, sulfaphenazole and tranylcypromine had very little or no effect on the activity. The apparent Km for 6alpha-hydroxylation of taurochenodeoxycholic by human liver microsomes was high (716 microM). This might give an explanation for the limited formation of 6alpha-hydroxylated bile acids in healthy humans. From the present results, it can be concluded that CYP3A4 is active in the 6alpha-hydroxylation of both taurochenodeoxycholic acid and lithocholic acid in human liver.  相似文献   

18.
Chamomile extracts and tea are widely used herbal preparations for the treatment of minor illnesses (e.g. indigestion, inflammation). In this study the inhibitory effect of chamomile essential oil and its major constituents on four selected human cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2D6 and CYP3A4) was investigated. Increasing concentrations of the test compounds were incubated with individual, recombinant CYP isoforms and their effect on the conversion of surrogate substances was measured fluorometrically in 96-well plates; enzyme inhibition was expressed as IC50 and Ki value in relation to positive controls. Crude essential oil demonstrated inhibition of each of the enzymes, with CYP1A2 being more sensitive than the other isoforms. Three constituents of the oil, namely chamazulene (IC50 = 4.41 microM), cis-spiroether (IC50 = 2.01 microM) and trans-spiroether (IC50 = 0.47 microM) showed to be potent inhibitors of this enzyme, also being active towards CYP3A4. CYP2C9 and CYP2D6 were less inhibited, only chamazulene (IC50 = 1.06 microM) and alpha-bisabolol (IC50 = 2.18 microM) revealed a significant inhibition of the latter. As indicated by these in vitro data, chamomile preparations contain constituents inhibiting the activities of major human drug metabolizing enzymes; interactions with drugs whose route of elimination is mainly via cytochromes (especially CYP1A2) are therefore possible.  相似文献   

19.
A rapid, sensitive, precise and accurate high-performance liquid chromatographic assay with fluorescence detection was developed for the simultaneous determination of buprenorphine and buprenorphine propionate in human and animal blood. Buprenorphine propionate was also proven to be a prodrug of buprenorphine. It was comprised of only a one-step extraction procedure with ethyl acetate and normal-phase chromatography on a Betasil Silica column. The recoveries of buprenorphine and buprenorphine propionate were above 84%. Calibration graphs were linear for buprenorphine over the concentration range 2-1500 ng/ml and for buprenorphine propionate over the concentration range 20-1500 ng/ml with a coefficient of variation, both within- and between-day, or less than 10% at any level. The limits of quantitation of buprenorphine and buprenorphine propionate in human or animal blood were 2.0 and 20 ng/ml, respectively, based on a single-to-noise ratio of 3. The method has been successfully applied to pharmacokinetic studies of buprenorphine and buprenorphine propionate in rabbits. The results demonstrated that buprenorphine propionate was rapidly and totally converted to its parent drug, buprenorphine, following intravenous administration. Buprenorphine propionate is a prodrug of buprenorphine.  相似文献   

20.
Liver microsomal preparations are routinely used to predict drug interactions that can occur in vivo as a result of inhibition of cytochrome P450 (CYP)-mediated metabolism. However, the concentration of free drug (substrate and inhibitor) at its intrahepatic site of action, a variable that cannot be directly measured, may be significantly different from that in microsomal incubation systems. Intact cells more closely reflect the environment to which CYP substrates and inhibitors are exposed in the liver, and it may therefore be desirable to assess the potential of a drug to cause CYP inhibition in isolated hepatocytes. The objective of this study was to compare the inhibitory potencies of a series of CYP2D inhibitors in rat liver microsomes and hepatocytes. For this, we developed an assay suitable for rapid analysis of CYP-mediated drug interactions in both systems, using radiolabelled dextromethorphan, a well-characterized probe substrate for enzymes of the CYP2D family. Dextromethorphan demethylation exhibited saturable kinetics in rat microsomes and hepatocytes, with apparent Km and Vmax values of 2.1 vs. 2.8 microM and 0.74 nM x min(-1) per mg microsomal protein vs. 0.11 nM x min(-1) per mg cellular protein, respectively. Quinine, quinidine, pyrilamine, propafenone, verapamil, ketoconazole and terfenadine inhibited dextromethorphan O-demethylation in rat liver microsomes and hepatocytes with IC50 values in the low micromolar range. Some of these compounds exhibited biphasic inhibition kinetics, indicative of interaction with more than one CYP2D isoform. Even though no important differences in inhibitory potencies were observed between the two systems, most inhibitors, including quinine and quinidine, displayed 2-3-fold lower IC50 in hepatocytes than in microsomes. The cell-associated concentrations of quinine and quinidine were found to be significantly higher than those in the extracellular medium, suggesting that intracellular accumulation may potentiate the effect of these compounds. Studies of CYP inhibition in intact hepatocytes may be warranted for compounds that concentrate in the liver as the result of cellular transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号