首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticotropin releasing factor (CRF), (?) isoproterenol and vasoactive intestinal peptide (VIP) induced cyclic AMP synthesis and the release of immunoreactive adrenocorticotropin hormone (ACTH) from clonal mouse AtT-20 pituitary tumor cells. CRF and (?) isoproterenol together produced an additive increase in cyclic AMP formation but a less than additive effect on ACTH secretion. VIP with either CRF or (?) isoproterenol produced additive increases in both cyclic AMP and ACTH secretion. Forskolin, an activator of adenylate cyclase stimulated the release of ACTH suggesting that cyclic AMP mediates some of the effects of hormone-receptor activation on ACTH secretion. The action of all three receptor agonists and forskolin on ACTH release was blocked by dexamethasone treatment. The release process, but not the changes in cyclic AMP synthesis was calcium dependent with all these hormones. The calcium ionophore, A-23187, increased ACTH secretion without altering intracellular cyclic AMP content. Its effect on secretion was not additive with either CRF, (?) isoproterenol or VIP. These observations indicate that hormone-induced regulation of ACTH secretion converges at varying intracellular locations.  相似文献   

2.
Cholinergic muscarinic receptors were identified in AtT-20/D16-16 (AtT-20) cell membranes by receptor binding techniques and the effect of carbachol on basal and stimulated cyclic AMP formation and ACTH release was investigated. Carbachol markedly decreased the stimulatory effect of the adenylate cyclase activator, forskolin, on both cyclic AMP formation and ACTH secretion. Carbachol also reduced forskolin-stimulated adenylate cyclase activity. The stimulatory effects of (-) isoproterenol on cyclic nucleotide formation and ACTH secretion were also blocked by carbachol. The inhibitory effects of carbachol on (-) isoproterenol-stimulated cyclic AMP synthesis and ACTH secretion were reversed by the muscarinic antagonist, atropine, and not by the nicotinic antagonist, gallamine. These data suggest that in AtT-20 cells, inhibition of ACTH secretion may be regulated by activation of muscarinic receptors coupled negatively to adenylate cyclase.  相似文献   

3.
The corticotropin-releasing factor (CRF) analog CRF 9-41 inhibits CRF, but not forskolin or dibutyryl cyclic AMP, stimulated release of ACTH from isolated pituitary cells. CRF 9-41 also blocks CRF-stimulated accumulation of cyclic AMP in a parallel dose dependent fashion. CRF 9-41 has no effect on basal ACTH release or cAMP levels. This substantiates that the analog acts as a direct CRF antagonist and that the site of this inhibition is most likely at the level of binding of CRF to its receptor on the corticotrope. Various substances, including most prominently glucocorticoids, inhibit release of ACTH from the pituitary. In an effort to develop another class of inhibitors, Rivier et al recently synthesized analogs of corticotropin releasing factor (CRF). One among these, alpha-helical ovine CRF 9-41 blunts adrenalectomy and stress induced ACTH release in non-anesthetized rats. At micromolar concentrations, CRF 9-41, shifts rightward the dose response of isolated pituitary cells to ovine CRF. Thus, the authors suggested that CRF 9-41 acts as a competitive antagonist to CRF-induced ACTH secretion. CRF appears to act through stimulation of adenylate cyclase. To determine the potential site of action of CRF 9-41 in the activation sequence for adenylate cyclase, we studied its effects on pituitary cyclic AMP formation and ACTH secretion from dispersed anterior pituitary cells derived from normal adult rats, as well as, its interaction with cyclic nucleotide agonists.  相似文献   

4.
The cellular and molecular effects of forskolin, a direct, nonhormonal activator of adenylate cyclase, were assessed on the enzyme secretory process in dispersed rat pancreatic acinar cells. Forskolin stimulated adenylate cyclase activity in the absence of guanyl nucleotide. It promoted a rapid and marked increase in cellular accumulation of cyclic AMP alone or in combination with vasoactive intestinal peptide (VIP) but was itself a weak pancreatic agonist and did not increase the secretory response to VIP or other cyclic AMP dependent agonists. Somatostatin was a partial antagonist of forskolin stimulated cyclic AMP synthesis and forskolin plus cholecystokinin-octapeptide (CCK-OP) induced amylase release. Forskolin potentiated amylase secretion in response to calcium-dependent agonists such as CCK-OP, carbachol and A-23187, but did not affect the ability of CCK-OP and (or) carbachol to mobilize 45Ca from isotope preloaded cells; forskolin alone did not stimulate 45Ca release. In calcium-poor media, the secretory response to forskolin and CCK-OP was reduced in a both absolute and relative manner. The data suggests that calcium plays the primary role as intracellular mediator of enzyme secretion and that the role of cyclic AMP may be to modulate the efficiency of calcium utilization.  相似文献   

5.
Corticotropin releasing hormone (CRH) stimulation of ACTH release and cyclic AMP-mediated events involved in the control of ACTH release were compared in sham-operated and adrenalectomized rats. CRH-stimulated adenylate cyclase activity was decreased in pituitary homogenates from adrenalectomized animals. CRH-stimulated cyclic AMP accumulation was essentially abolished and CRH-stimulated cyclic AMP-dependent protein kinase (A-kinase) activity was decreased in freshly prepared anterior pituitary cells from adrenalectomized animals. Basal and CRH-stimulated ACTH release was elevated in these cells. Since ACTH release is increased in adrenalectomized rats despite the down regulation of CRH-linked pituitary mechanisms, we speculate that the site of action of disinhibition by corticosterone of ACTH release (or synthesis) following adrenalectomy is distal to the generation of cyclic AMP and/or that non-CRH mediated mechanisms assume a greater role in ACTH regulation following adrenalectomy.  相似文献   

6.
Hormonally stimulated secretion of ACTH from AtT-20 mouse pituitary tumor cells is a cyclic AMP-mediated process. The presence of inhibitory cholinergic muscarinic receptors on these cells was recently reported, and in this study, the relationship between the activation of these receptors and the consequent inhibition of cyclic AMP formation and ACTH secretion was investigated. The muscarinic agent, oxotremorine, antagonized both cyclic AMP synthesis and ACTH secretion in response to corticotropin-releasing factor (CRF), vasoactive intestinal peptide, a 27-amino acid peptide with an N-terminal histidine and a C-terminal isoleucine amide, and forskolin. Other muscarinic agents, carbachol and bethanechol, had similar inhibitory effects. The cholinomimetics reduced basal (unstimulated) ACTH secretion without decreasing basal cyclic AMP levels, and also antagonized hormone release in response to cyclic AMP-independent agonists such as K+, A-23187, and phorbol ester. Scopolamine reversed the inhibitory effects of the muscarinic agents on basal and stimulated ACTH secretion and cyclic AMP formation. Increasing the extracellular calcium concentration reversed the muscarinic antagonism of basal and CRF-stimulated hormone release without affecting the cyclic AMP response. Pertussis toxin pretreatment attenuated the inhibitory effects of the muscarinic agents on forskolin-stimulated cyclic AMP synthesis and ACTH secretion as well as the inhibitory effect of carbachol on basal ACTH release. The data suggest that cyclic AMP is an essential mediator in the ACTH secretory pathway, but that an alternate cyclic AMP-independent ACTH pathway also exists in the clonal cells, and that both pathways may be modulated by a common postcholinergic receptor mechanism.  相似文献   

7.
Forskolin, an adenylate cyclase activator and a cyclic AMP analogue, dibutyryl cyclic AMP have been used to examine the relationship between intracellular levels of cyclic AMP and lipid synthesis inMycobacterium smegmatis. Total phospholipid content was found to be increased in forskolin grown cells as a result of increased cyclic AMP levels caused by activation of adenylate cyclase. Increased phospholipid content was supported by increased [14C] acetate incorporation as well as increased activity of glycerol-3-phosphate acyltransferase. Pretreatment of cells with dibutyryl cyclic AMP had similar effects on lipid synthesis. Taking all these observations together it is suggested that lipid synthesis is being controlled by cyclic AMP in mycobacteria.  相似文献   

8.
Dog thyroid epithelial follicular cells in primary culture are quiescent in an insulin-supplemented serum-free medium. They are induced, after a 16- to 20-h prereplicative phase, to synthesize DNA upon stimulation by forskolin, a general adenylate cyclase activator that mimics all the effects of thyrotropin in these cells. The characteristics of adenylate cyclase activation by forskolin make this drug a convenient tool to enhance cellular cyclic AMP levels for well-defined periods of the cell cycle, allowing determination of which parts of the prereplicative phase are controlled by cyclic AMP. We observe that induction of DNA synthesis by forskolin requires its continuous presence for most of the prereplicative phase until a point that little precedes the initiation of DNA replication. Before this point, interruptions in forskolin presence as short as 2 h delay the onset of DNA synthesis, indicating a rapid regression of the cells to an earlier part of G1 from which they can be rescued by forskolin readdition. Similar delays in the onset of S phase are also induced by reversible protein synthesis inhibitions using pulses of cycloheximide. These data suggest that in dog thyrocytes elevated cyclic AMP levels stimulate the progression into G1 phase until a late commitment point before DNA synthesis. This progression depends on peculiarly labile cyclic AMP-stimulated events which might well be the induction by cyclic AMP of the synthesis of labile proteins.  相似文献   

9.
Endotoxin, the lipopolysaccharide from the cell wall of Gram-negative bacteria, causes blood clotting in the horseshoe crab,Limulus polyphemus. Minute amounts of endotoxin stimulate the amebocytes in the blood to undergo exocytosis, which release the contents of their secretory granules to form a clot. An endotoxin-binding protein that possesses calmodulin-like activity has been isolated from the amebocyte plasma membrane. This endotoxin-binding protein can activate adenylate cyclase fromBordetella pertussis to the same extent as rat testes calmodulin. The effect of endotoxin and the endotoxin-binding protein on cyclic AMP synthesis inLimulus amebocytes was examined. Amebocytes exposed to endotoxin have increased levels of intracellular cyclic AMP. Amebocyte membranes contain an adenylate cyclase which is stimulated by NaF, guanosine (β,r-imido)triphosphate, and for skolin. This adenylate cyclase is also stimulated by the endotoxin-binding protein and calcium. Exposure of amebocytes to forskolin or dibutyryl cyclic AMP are stimulated to secrete clot components. Activation of adenylate cyclasein vivo by endotoxin via the endotoxin-binding protein may be one of the ways in which endotoxin stimulates secretion. It is suggested that endotoxin may have two actions in theLimulus system: (1) binding of endotoxin to the endotoxin-binding protein activates adenylate cyclase, promoting secretion by the amebocytes; and (2) endotoxin catalyzes a reaction on the secreted material to form a blood clot. This latter reaction is not elicited by forskolin or dibutyryl cyclic AMP.  相似文献   

10.
Treatment of adrenal chromaffin cells with forskolin (0.1-10 microM) stimulated cyclic AMP levels, reduced the maximal stimulation of release of noradrenaline by nicotine, and increased release in response to elevated external potassium and the calcium ionophore A23187. The presence of the phosphodiesterase inhibitor Ro 20-17-24 with forskolin potentiated both the stimulation of cyclic AMP and the inhibition of nicotine-induced noradrenaline release. Dibutyryl cyclic AMP, and the elevation of cyclic AMP with prostaglandin E1, also attenuated nicotine-stimulated release. However, when the stimulation of intracellular cyclic AMP production by prostaglandin E1 was potentiated by low levels of forskolin, there was not a concomitant potentiation of effect on noradrenaline release. Dideoxyforskolin, an analogue of forskolin which does not stimulate adenylate cyclase, inhibited both potassium- and nicotine-stimulated release, probably by a mechanism unrelated to the action of forskolin in these experiments. Using Fura-2 to estimate free intracellular calcium levels, both forskolin and dideoxyforskolin (at 10 microM) reduced the calcium transient in response to nicotine. These results support a model in which elevation of cyclic AMP inhibits the activation of nicotinic receptors, but augments stimulus secretion coupling downstream of calcium entry. The data, however, do not indicate a simple relationship between total intracellular cyclic AMP levels and the attenuation of nicotinic stimulation of release.  相似文献   

11.
The secretion of ACTH by corticotrophs in the anterior lobe of the rat pituitary gland is under the stimulatory influence of at least three receptors, namely that for peptidic CRF (corticotropin-releasing factor), vasopressin and alpha 1-adrenergic agents. CRF is a potent stimulator of cyclic AMP accumulation as well as adenylate cyclase activity in the rat adenohypophysis, thus suggesting an important role of cyclic AMP as mediator of CRF action on ACTH secretion. Vasopressin causes a 2-fold increase of the stimulatory effect of CRF on ACTH release in rat anterior pituitary cells in culture. The potentiating effects of vasopressin on CRF-induced ACTH release are accompanied by parallel changes of intracellular cyclic AMP levels. Vasopressin, while having no effect on basal cyclic AMP levels, causes a 2-fold increase in CRF-induced cyclic AMP accumulation without affecting the ED50 value of CRF action. ACTH secretion is also stimulated by a typical alpha 1-adrenergic receptor. Epinephrine causes a marked stimulation of ACTH release which is additive to that of CRF. Epinephrine, in analogy with vasopressin, although having no effect alone on basal cyclic AMP levels, causes a marked potentiation of CRF-induced cyclic AMP accumulation. Glucocorticoids cause a near-complete inhibition of epinephrine-induced ACTH secretion within 4 h with the following order of ED50 values: triamcinolone acetonide (0.2 nM) greater than dexamethasone (1.0 nM) much greater than cortisol (11 nM) greater than corticosterone (22 nM). Similar effects are observed for CRF- and vasopressin-induced ACTH release. Although the activity of the pituitary-adrenocortical axis in the rat is highly dependent upon sex steroids, 17 beta-estradiol, 5 alpha-dihydrotestosterone and the pure progestin R5020 have no detectable effect on basal or epinephrine-induced ACTH release, thus illustrating the high degree of specificity of glucocorticoids in their feedback control of ACTH secretion. Moreover, glucocorticoids have no effect on CRF-induced cyclic AMP accumulation, thus indicating that their inhibitory effect is exerted at a step following cyclic AMP accumulation.  相似文献   

12.
Endotoxin, the lipopolysaccharide from the cell wall of Gram-negative bacteria, causes blood clotting in the horseshoe crab,Limulus polyphemus. Minute amounts of endotoxin stimulate the amebocytes in the blood to undergo exocytosis, which release the contents of their secretory granules to form a clot. An endotoxin-binding protein that possesses calmodulin-like activity has been isolated from the amebocyte plasma membrane. This endotoxin-binding protein can activate adenylate cyclase fromBordetella pertussis to the same extent as rat testes calmodulin. The effect of endotoxin and the endotoxin-binding protein on cyclic AMP synthesis inLimulus amebocytes was examined. Amebocytes exposed to endotoxin have increased levels of intracellular cyclic AMP. Amebocyte membranes contain an adenylate cyclase which is stimulated by NaF, guanosine (,r-imido)triphosphate, and for skolin. This adenylate cyclase is also stimulated by the endotoxin-binding protein and calcium. Exposure of amebocytes to forskolin or dibutyryl cyclic AMP are stimulated to secrete clot components. Activation of adenylate cyclasein vivo by endotoxin via the endotoxin-binding protein may be one of the ways in which endotoxin stimulates secretion. It is suggested that endotoxin may have two actions in theLimulus system: (1) binding of endotoxin to the endotoxin-binding protein activates adenylate cyclase, promoting secretion by the amebocytes; and (2) endotoxin catalyzes a reaction on the secreted material to form a blood clot. This latter reaction is not elicited by forskolin or dibutyryl cyclic AMP.A preliminary report of this work has been presented elsewhere (Liu and Liang, 1984).  相似文献   

13.
Desensitization of corticotropin-releasing factor receptors   总被引:4,自引:0,他引:4  
Pretreatment of rat anterior pituitary cells with corticotropin releasing factor (CRF) rapidly and markedly reduced the ability of CRF to restimulate cyclic AMP formation and adrenocorticotropic hormone (ACTH) release. The effect was dependent on the length of time of pretreatment as well as the concentration of CRF. Neither basal nor intracellular immunoreactive ACTH levels nor basal cyclic AMP content were affected. CRF's stimulatory action on cyclic AMP formation and ACTH release recovered within one hour following CRF pretreatment. Forskolin, a compound that directly activates adenylate cyclase also releases ACTH from these cells. Pretreatment with CRF did not alter forskolin-stimulated cyclic AMP accumulation or ACTH secretion. Furthermore, CRF pretreatment did not change epinephrine's ability to increase the release of ACTH. These results indicate that CRF can regulate the responsiveness of its own receptor.  相似文献   

14.
Monensin inhibition of corticotropin releasing factor mediated ACTH release   总被引:1,自引:0,他引:1  
D O Sobel  K M Shakir 《Peptides》1988,9(5):1037-1042
Monensin is a sodium selective carboxylic ionophore that has been helpful in studying the intracellular mechanisms of protein secretion by its ability to inhibit transport of secretory proteins, particularly through the Golgi apparatus, and by its capacity to block intracellular posttranslational processing events. We studied in rat anterior pituitary cell culture the effects of monensin on: CRF stimulated ACTH release; presynthesized (stored) ACTH release; and on forskolin- (activator of adenylate cyclase) and KCl- (a membrane depolarizer which does not stimulate ACTH synthesis) induced ACTH release. Monensin inhibited CRF stimulated ACTH release in a dose-dependent fashion. The ED50 was 2.7 x 10(-8) M and maximal inhibition was 52% at 1.5 x 10(-7) M. Inhibition at 40 minutes of CRF incubation was similar to the percent inhibition noted at 1 hr 40 min and 2 hr 40 min. Monensin (1.5 x 10(-6) M) decreased the amount of ACTH release from cells incubated with cycloheximide plus CRF by 32% (p less than 0.01). Monensin individually inhibited forskolin (2 x 10(-6) M) and dibutyryl cyclic AMP (3 x 10(-3) M) mediated ACTH release in a dose-dependent fashion. The inhibition of forskolin and dibutyryl cyclic AMP mediated ACTH release by 1.5 x 10(-6) M monensin was 48% and 46% respectively. Monensin (1.5 x 10(-6) M) also reduced KCl (50 mM) stimulated ACTH release by 48%. This study demonstrates that monensin inhibits CRF mediated ACTH release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pertussis toxin was purified approx. 1800-fold from pertussis vaccine. Administration of as little as 1 microgram of toxin/100 g body weight to hamsters markedly decreased the sensitivity of their adipocytes to agents that inhibit adenylate cyclase through receptor-mediated, GTP-dependent mechanisms such as alpha 2-adrenergic amines, prostaglandins, phenylisopropyladenosine and nicotinic acid. On the contrary, the inhibitory effect of 2',5'-dideoxyadenosine on cyclic AMP accumulation was not affected by the toxin. Activation of adenylate cyclase by isoproterenol, ACTH or forskolin was not diminished by the toxin but the maximum cyclic AMP accumulation was consistently increased. Furthermore, the dose-response curves for ACTH and forskolin were clearly shifted to the left in adipocytes from toxin-treated hamsters as compared to control adipocytes. It is concluded that pertussis toxin blocks the transfer of inhibitory information from the receptors to adenylate cyclase.  相似文献   

16.
The hormonal regulation of adenylate cyclase, cAMP-dependent protein kinase activation, and adrenocorticotropic hormone (ACTH) secretion was studied in AtT20 mouse pituitary tumor cells. Corticotropin releasing factor (CRF) stimulated cAMP accumulation and ACTH release in these cells. Maximal ACTH release was seen with 30 nM CRF and was accompanied by a 2-fold rise in intracellular cAMP. When cells were incubated with both 30 nM CRF and 0.5 mM 3-methylisobutylxanthine (MIX) cAMP levels were increased 20-fold, however, ACTH release was not substantially increased beyond release seen with CRF alone. The activation profiles of cAMP-dependent protein kinases I and II were studied by measuring residual cAMP-dependent phosphotransferase activity associated with immunoprecipitated regulatory subunits of the kinases. Cells incubated with CRF in the absence of MIX showed concentration-dependent activation of protein kinase I which paralleled stimulation of ACTH release. Protein kinase II was minimally activated. When cells were exposed to CRF in the presence of 0.5 mM MIX there was still a preferential activation of protein kinase I, although 50% of the cytosolic protein kinase II was activated. Complete activation of both protein kinases I and II was seen when cells were incubated with 0.5 mM MIX and 10 microM forskolin. Under these conditions cAMP levels were elevated 80-fold. CRF, isoproterenol, and forskolin stimulated adenylate cyclase activity in isolated membranes prepared from AtT20 cells. CRF and isoproterenol stimulated cyclase activity up to 5-fold while forskolin stimulated cyclase activity up to 15-fold. Our data demonstrate that ACTH secretion from AtT20 cells is mediated by small changes in intracellular levels of cAMP and activation of only a small fraction of the total cytosolic cAMP-dependent protein kinase in these cells is required for maximal ACTH secretion.  相似文献   

17.
The role of cyclic AMP in the stimulation of corticotropin (ACTH) release by corticotropin-releasing factor (CRF), angiotensin II (AII), vasopressin (VP), and norepinephrine (NE) was examined in cultured rat anterior pituitary cells. Synthetic CRF rapidly stimulated cyclic AMP production, from 4- to 6-fold in 3 min to a maximum of 10- to 15-fold at 30 min. Stimulation of ACTH release by increasing concentrations of CRF was accompanied by a parallel increase in cyclic AMP formation, with ED50 values of 0.5 and 1.3 nM CRF for ACTH and cyclic AMP, respectively. A good correlation between cyclic AMP formation and ACTH release was also found when pituitary cells were incubated with the synthetic CRF(15-41) fragment, which displayed full agonist activity on both cyclic AMP and ACTH release with about 0.1% of the potency of the intact peptide. In contrast, the CRF(21-41) and CRF(36-41) fragments were completely inactive. The other regulators were less effective stimuli of ACTH release and caused either no change in cyclic AMP (AII and VP) or a 50% decrease in cyclic AMP (NE). Addition of the phosphodiesterase inhibitor, methylisobutylxanthine, increased the sensitivity of the ACTH response to CRF but did not change the responses to AII, VP, and NE. In pituitary membranes, adenylate cyclase activity was stimulated by CRF in a dose-dependent manner with ED50 of 0.28 nM, indicating that the CRF-induced elevation of cyclic AMP production in intact pituitary cells is due to increased cyclic AMP biosynthesis. The intermediate role of cyclic AMP in the stimulation of ACTH release by CRF was further indicated by the dose-related increase in cyclic AMP-dependent protein kinase activity in pituitary cells stimulated by CRF with ED50 of 1.1 nM. These data demonstrate that the action of CRF on ACTH release is mediated by the adenylate cyclase-protein kinase pathway and that the sequence requirement for bioactivity includes the COOH-terminal 27 amino acid residues of the molecule. The other recognized regulators of ACTH release are less effective stimuli than CRF and do not exert their actions on the corticotroph through cyclic AMP-dependent mechanisms.  相似文献   

18.
The interaction between forskolin and vasoactive intestinal polypeptide (VIP) in the regulation of cyclic AMP production in GH3 pituitary tumour cells was investigated. Both forskolin (10nM-10 microns) and VIP (10pM-10nM) increased the cyclic AMP content of GH3 cells. Forskolin (50-100nM) was additive with VIP in stimulating cyclic AMP accumulation when low concentrations (less than 1 nM) of the peptide were used, but exhibited a synergistic interaction with higher VIP concentrations (10-100 nM). These effects on cyclic AMP accumulation were reflected in a leftward shift in the concentration-response curve for VIP-stimulated prolactin release from GH3 cells, a process known to be regulated by intracellular cyclic AMP concentrations. The synergy observed did not appear to be related to changes in cyclic nucleotide phosphodiesterase activity, since it was even more marked in the presence of isobutylmethylxanthine, a phosphodiesterase inhibitor. Studies of the time-course of VIP-induced changes in GH3-cell cyclic AMP content revealed that, with high concentrations of VIP, production ceased within 2 min of addition. This attenuation of cyclic AMP synthesis was still observed in the presence of isobutylmethylxanthine, but was markedly inhibited by low concentrations of forskolin (50-100nM). The results suggest that VIP-induced cyclic AMP production rapidly becomes desensitized. This process, which is prevented by forskolin, may be related to changes in the ability of the guanine nucleotide regulatory protein to couple receptor occupancy to activation of adenylate cyclase.  相似文献   

19.
Release of [14C]glucosamine-labelled mucins was studied in vitro using well-characterised preparations of rat submandibular acini. Mucin release was stimulated by forskolin, an activator of the catalytic subunit of adenylate cyclase, and 3-isobutyl-1-methylxanthine (IBMX), a cyclic nucleotide phosphodiesterase inhibitor. Both stimulated in a dose-dependent manner to the same maximum as that seen with isoproterenol. Neither forskolin nor IBMX added in the presence of isoproterenol increased secretion above the maximum in response to isoproterenol alone, suggesting a similar mechanism of action, mediated by cyclic AMP. Prior exposure of acini to isoproterenol (10 microM) for 45 min, followed by washout resulted in (a) persistent increase in basal secretion which was abolished by propranolol and (b) reduced stimulation of mucin secretion in response to either a second isoproterenol challenge, noradrenaline or forskolin. Thus, exposure of rat submandibular acini in vitro desensitizes the cells to subsequent stimulation. Although this mimics the decreased beta-adrenergic secretory responses seen in submandibular cells from cystic fibrosis patients, results suggest that the isoproterenol-induced desensitization is at the level of beta-receptor and adenylate cyclase, rather than distal to cyclic AMP.  相似文献   

20.
Forskolin, an activator of adenylate cyclase, stimulates adrenocorticotropin (ACTH) release and increases proopiomelanocortin mRNA levels in anterior pituitary cells by enhancing cyclic AMP (cAMP)-dependent protein kinase activity. The phorbol ester phorbol 12-myristate 13-acetate (PMA) evokes these same responses from anterior pituitary cells by activating protein kinase C. Both protein kinases most likely induce their cellular effects by catalyzing the phosphorylation of specific proteins. To elucidate the mechanisms by which cAMP-dependent protein kinase and protein kinase C promote ACTH secretion and synthesis, the phosphoproteins regulated by forskolin and PMA were identified in the cell line AtT-20, which consists of a homogeneous population of corticotrophs. Phosphoproteins were analyzed in different subcellular fractions by two-dimensional polyacrylamide gel electrophoresis and autoradiography. Forskolin increased phosphate incorporation into two proteins in the cytoplasmic fraction of 24 kilodaltons (kd) (pI 6.8) and 40 kd (pI 5.8), two proteins in the plasma membrane fraction of 32 kd (pI 8.3) and 60 kd (pI 8), and one protein in the nuclear fraction of 20 kd (pI 8.7). Insertion of the inhibitor of cAMP-dependent protein kinase into the AtT-20 cells, using a liposome technique, blocked the rise in phosphate incorporation induced by forskolin. PMA also stimulated phosphate incorporation into proteins in AtT-20 cells. PMA increased the phosphorylation of three cytoplasmic proteins of 25 kd (pI 7.6), 40 kd (pI 5.8), and 40 kd (pI 8.1) as well as two membrane proteins of 32 kd (pI 8.3) and 60 kd (pI 8) and one nuclear protein of 20 kd (pI 6.3).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号